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Abstract The evaluation of thermal bioclimate can be con-
ducted employing either observational or modeling tech-
niques. The advantage of the numerical modeling approach
lies in that it can be applied in areas where there is lack of
observational data, providing a detailed insight on the prevail-
ing thermal bioclimatic conditions. However, this approach
should be exploited carefully since model simulations can be
frequently biased. The aim of this paper is to examine the
suitability of a mesoscale atmospheric model in terms of
evaluating thermal bioclimate. For this, the numerical weather
prediction Weather Research and Forecasting (WRF) model
and the radiation RayMan model are employed for simulating
thermal bioclimatic conditions in Greece during a 1-year time
period. The physiologically equivalent temperature (PET) is
selected as an index for evaluating thermal bioclimate, while
synoptic weather station data are exploited for verifying mod-
el performance. The results of the present study shed light on
the strengths and weaknesses of the numerical modeling ap-
proach. Overall, it is shown that model simulations can pro-
vide a useful alternative tool for studying thermal bioclimate.
Specifically for Greece, the WRF/RayMan modeling system
was found to perform adequately well in reproducing the
spatial and temporal variations of PET.
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Introduction

The thermal bioclimate is of great interest not only for the
stakeholders involved in the public health and tourism sectors
(De Freitas et al. 2007), but also for the general public. It
comprises the meteorological parameters of air temperature
and humidity, wind speed, and short- and long-wave radiation
fluxes, which thermophysiologically influence human beings
both indoors and outdoors (Höppe 1993). The thermal
bioclimate is significant for human health due to the close
relationship between the thermoregulatorymechanism and the
circulatory system (Höppe 1993; Nastos and Matzarakis
2006).

The evaluation of the thermal bioclimate is typically con-
ducted using appropriate indices. The concept is that the
factors that influence human response to the thermal environ-
ment are integrated to provide a single index value (Fanger
1972; Parsons 1993). In the past, simple thermal indices were
frequently used for assessing the thermal bioclimate. Such
indices (e.g., ISO 1982; Steadman 1971; Thom 1959) are
nowadays considered to be inadequate for describing the
thermal environment. This is because they are based on single
or composite meteorological parameters and do not account
for the thermal physiology (Höppe 1993; Mayer 1993).

The above limitations can be eliminated by using physio-
logically relevant indices that are derived from the human
energy balance for the assessment of the thermal environment
(Höppe 1993). Such indices are the physiologically equivalent
temperature (PET; Mayer and Höppe 1987) or standard effec-
tive temperature (SET*; Gagge et al. 1986; Höppe 1999;
Mayer 1993) and the predicted mean vote (PMV; Fanger
1972). Thermophysiologically significant indices can be com-
puted at varying time and spatial resolutions, providing dif-
ferent levels of information at each case. At the microscale (0–
500 m), the implementation of these indices can be particu-
larly useful for urban planning purposes and heat health
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issues. For instance, Gulyás et al. (2006) used PET to conduct
a human-biometeorological assessment of the microclimate of
a complex urban district in the city of Szeged, Hungary. More
recently, Fröhlich and Matzarakis (2013) used the same index
for evaluating the impact of urban street design and surface
materials on the thermal bioclimate of a public place in the city
of Freiburg, Germany. Charalampopoulos et al. (2013) also
applied PET to investigate the variation of human thermal
comfort in selected urban areas with different vegetation and
building structures, in Athens, Greece.

On the other hand, there is a growing demand for tempo-
rally and spatially detailed thermal bioclimate data, which
could be used for applied research in the field of tourism
climatology (Matzarakis 2006; Shiue and Matzarakis 2011).
This demand can be met by means of constructing bioclimatic
map s t h a t d e p i c t t h e s p a t i a l d i s t r i b u t i o n o f
thermophysiologically significant indices at the mesoscale
(≥1 km). Spatially detailed bioclimatic data can be derived
from point data with the aid of geostatistical methods
(Matzarakis and Mayer 1997). However, this approach has
some limitations. More importantly, the accuracy of this meth-
od depends strongly on the availability of point data (i.e.,
observations). This is because it employs multiple linear re-
gressionmethods for determining the relationship between the
dependent variable (i.e., the selected index) and a set of
independent variables (e.g., geographic location, elevation,
land use, etc.) (Matzarakis and Mayer 1997). Therefore, it is
in principle required that the available point data be represen-
tative of the entire area over which the geostatistical approach
is implemented.

Numerical modeling can provide an alternative solution for
studying the temporal and spatial variations of the thermal
bioclimate. Cross-scale atmospheric modeling systems, which
are able to simulate meteorological conditions from regional
to building scales and which can be coupled to human-
response models, are considered to be a valuable tool for this
purpose. The key advantage of numerical models is that they
can provide detailed meteorological data at the desired tem-
poral and spatial resolution for, literally, any geographical area
of interest. These data can be consequently exploited for
evaluating the thermal bioclimate, especially in areas where
there is lack of high quality measurements. Moreover, numer-
ical models can serve as an important tool for assessing the
thermal bioclimatic impact of future climate change (e.g.,
Endler and Matzarakis 2011; Fröhlich and Matzarakis 2013)
and examining the effect of potential mitigation strategies
(e.g., Papangelis et al. 2012).

The key objective of the present study is to examine the
degree to which a mesoscale numerical weather prediction
(NWP) model can be used for driving a human-response
model in order to evaluate the thermal bioclimate. The study
area, Greece, was selected due to its complex topography that
may result to considerable variations of the thermal

bioclimatic conditions at different locations (Matzarakis and
Mayer 1997). Furthermore, this study extends to an entire year
to allow for a complete evaluation of the seasonal variations of
the thermal environment.

Materials and methods

Study area and meteorological data

Greece is located in southeast Europe (Fig. 1a), confined to the
area between 34° and 42° northern latitude and 19° and 28°
eastern longitude. It covers about 132,000 km2, comprising a
mountainous, peninsular mainland jutting out into the south-
east Mediterranean at the southern end of the Balkans. The
topography of Greece is very complex and highly variable
(Fig. 1b). Although it has one of the longest coastlines in the
world, due to its highly indented coastline and numerous
islands, it is also one of the most mountainous countries in
Europe (CIA 2013).

The observational data used in the present study were
obtained from a network of 19 surface synoptic weather
stations, operated by the Hellenic National Meteorological
Service (HNMS) and part of the World Meteorological Orga-
nization (WMO) weather station network. The locations of the
stations are shown in Fig. 1b, while Table 1 summarizes basic
information about the measuring sites. It should be mentioned
that all weather stations used in this study are located on planar
areas and close to the coastline, except from station 16648 that
is found at an inland site (Fig. 1b). Data availability justifies
the selection of this particular set of measuring sites. The data
used cover a 1-year period, spanning from January 1 through
December 31 2003.

Physiologically equivalent temperature

The physiologically equivalent temperature (PET) was used
as an index for assessing the thermal bioclimate (Höppe
1999). It has been widely used as an index for studying the
thermal bioclimate, and thus, comparisons with past studies
can be easily made. The calculation of PET is based on a
human energy balance model, namely the Munich Energy
Balance Model for Individuals (MEMI, Höppe 1984).

Implemented models

The study of the thermal bioclimate of Greece was conducted
using a combination of two models. The NWP Weather Re-
search and Forecasting (WRF) model (Skamarock et al. 2008)
was employed for the numerical simulation of meteorological
conditions, while PET was computed by applying the
RayMan model (Matzarakis et al. 2007, 2010).
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WRF

The meteorological model used in this study is the WRF-
ARW (Advanced Research Weather), version 3.2

(Skamarock et al. 2008). The numerical simulations were
conducted on one modeling domain with horizontal grid
resolution of 6 km (mesh size of 260×165), focusing on
Greece (Fig. 1a). Thirty-three vertical levels were defined

Fig. 1 Topographic map of a Europe with identification of Greece (black box) and b Greece with identification of the surface synoptic weather stations
(dots and World Meteorological Organization IDs)
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and the model top was specified at 100 hPa. The physical
options used for conducting the numerical simulations are
summarized in Table 2.

The WRF simulations were initialized using the 0.25°×
0.25° spatial resolution and 6 h temporal resolution operation-
al atmospheric analysis surface and pressure level data of the
European Centre for Medium-range Weather Forecasts
(ECMWF). The lateral boundary conditions for the modeling
domain were obtained by linearly interpolating the ECMWF

analysis data. The National Centre for Environmental Predic-
tions (NCEP) ADP Operational Global Synoptic and Upper
Air database was used for retrieving observational data for
assimilation, at 6 h temporal resolution. Data assimilation was
carried out using the advanced three-dimensional variational
data assimilation system ofWRF (WRF-Var, Skamarock et al.
2008).

Numerical simulations were conducted for the year 2003.
The simulations were initialized at 0000 UTC every 9 days,

Table 1 Summary of the charac-
teristics of the 19 surface synoptic
weather stations, grouped by
geographical region

asl above sea level

WMO ID Site Latitude (°N) Longitude (°E) Altitude (asl)

West Greece

16643 Aktion 38.92 20.77 1.00

16682 Andravida 37.92 21.28 15.10

16687 Araxos 38.15 21.42 11.70

16726 Kalamata 37.07 22.02 11.10

16641 Kerkira 39.60 19.90 4.00

North Greece

16627 Alexandroupolis 40.85 25.93 3.50

16624 Chrissoupolis 40.52 22.97 4.80

16622 Thessaloniki 40.92 24.62 3.00

Central Greece

16648 Larissa 39.65 22.45 74.00

South Greece

16716 Athens 37.89 23.74 15.00

North Aegean

16650 Limnos 39.92 25.23 4.60

Central Aegean

16706 Chios 38.33 26.14 3.80

16667 Mitilini 39.05 26.60 5.00

16723 Samos 37.69 26.91 7.30

16684 Skiros 38.96 24.49 17.90

South Aegean

16754 Heraklion 35.33 25.18 39.00

16742 Kos 36.78 27.07 125.00

16749 Rodos 36.40 28.08 11.50

16746 Souda 35.53 24.15 151.60

Table 2 Summary of the physi-
cal options (schemes) used in the
numerical simulations

Physics Parameterization (scheme) Reference

Surface layer ETA Janjic (1996, 2002)

Planetary boundary layer MYJ (Mellor-Yamada-Janjic) Janjic (1994)

Land surface model Noah Chen and Dudhia (2001)

Short-wave radiation Dudhia Dudhia (1989)

Long-wave radiation RRTM (Rapid Radiative Transfer Model) Mlawer et al. (1997)

Cumulus Kain-Fritsch Kain (2004)

Microphysics WRF Single-Moment 6-Class Hong and Lim (2006)
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integrating for 10 days. The first 24 h of each simulation was
discarded as coinciding with the model’s spin-up period. Data
assimilation was first carried out at the beginning of each 10-
day integration time period (cold model start) and at 6 h
intervals, thereafter (cycling model run).

RayMan

RayMan is a numerical model that allows for the computation
of radiation fluxes in simple and complex environments
(Matzarakis et al. 2007, 2010). This enables the computation
of the mean radiant temperature that is necessary for the
calculation of thermal bioclimatic indices, such as PET. The
principal idea of this study was to implement RayMan twice to
calculate PET at the locations of the synoptic weather station
stations (Fig. 1b). During the first implementation, RayMan
was driven by the in situ meteorological data. During the
second, the WRF-simulated meteorological data, bilinearly
interpolated onto the measuring sites, were used. Bilinear
interpolation was selected as a common approach in similar
studies focusing on model performance evaluation (e.g.,
Giannaros et al. 2013a; Miao et al. 2007). At both cases, air
temperature, vapor pressure, wind speed, and cloud cover data
were used for driving RayMan. The resulting PET values were
classified into nine classes of thermal stress (Table 3;
Matzarakis and Mayer 1996) and analyzed.

Results

Validation of the meteorological model

Domain-wide statistics provide an overall performance mea-
sure on how well the model simulations replicate the observed
thermal bioclimatic conditions in Greece. Table 4 is a compi-
lation of the computed model performance metrics for PET.
The first categorization of the statistical measures is seasonal.

For all seasons, the model simulations appear to be biased
cold, underestimating PET by −0.24 °C in the autumn to
−1.31 °C in the summer. Overall, the model seems to perform
better during the cold half of the year (SON and DJF) than
during the warm half (MAM and JJA). The best model obser-
vation agreement occurs in the winter, whereas the largest
MBE and RMSE values were computed for the summer.

The second group of statistics (regional) in Table 4 was
calculated from data subsets over the different regions of
Greece for the entire study period. The model is found to be
generally biased cold, underestimating PET by −0.04 °C over
West Greece to −1.63 °C over South Greece. Not surprisingly,
the presented statistical measures indicate a regional depen-
dence of the model performance. In particular, it is clear that
PET is better simulated over the regions of the Aegean Sea
than over continental Greece. This could be, at least partially,
attributed to the complex topography of continental Greece
that is hard to model despite the relatively high horizontal
resolution (6 km) that was specified.

Figure 2 depicts the relationship between the hourlymodel-
simulated and observed PET during winter and summer for all
examined stations. The previously identified underestimation
(Table 4) is also obvious in Fig. 2. However, it now becomes
clear that the model mainly underestimates the higher PET
values. Despite the scattering of the data points, the correlation
between modeled and observed PET is found to be good,
showing statistically significant (α=0.05) R2 values of 0.84
in winter (Fig. 2a) and 0.80 in summer (Fig. 2b). The greater
scattering found for summer (Fig. 2b) could be due to the
greater variability of meteorological conditions (e.g., cloud

Table 3 Thermal stress classes for human beings [internal heat produc-
tion of 80 W and heat transfer resistance of the clothing of 0.9 clo
(clothing value)] after Matzarakis and Mayer (1996)

PET (°C) Thermal perception Level of thermal stress

<4 Very cold Extreme cold stress

4–8 Cold Strong cold stress

8–13 Cool Moderate cold stress

13–18 Slightly cool Slight cold stress

18–23 Comfortable No thermal stress

23–29 Slightly warm Slight heat stress

29–35 Warm Moderate heat stress

35–41 Hot Strong heat stress

>41 Very hot Extreme heat stress

Table 4 Model performance metrics computed for PET for various
subsets of data

PET (°C)

Data subsets MBE RMSE R2

Seasonal

DJF −0.29 2.30 0.84

MAM −0.60 3.11 0.88

JJA −1.31 3.82 0.80

SON −0.24 2.80 0.86

Regional

West Greece −0.04 3.12 0.93

North Greece −0.96 3.24 0.94

Central Greece −0.22 3.32 0.94

South Greece −1.63 2.87 0.98

North Aegean 0.32 2.89 0.95

Central Aegean −0.94 3.11 0.93

South Aegean −0.61 2.90 0.91

DJF December-January-February, MAM March-April-May, JJA June-
July-August, SON September-October-November
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cover, wind), which is thought to cause variation in the sim-
ulation of thermal bioclimatic conditions (Matzarakis et al.
2007). In addition, the high complexity of the study area may
also contribute to the observed differences, as the model
simulations may not replicate accurately the local-scale mete-
orological conditions. Nevertheless, the overall agreement
between the modeled and measured PET is found to be
satisfactory.

Evaluation of thermal bioclimate of Greece

Two types of diagrams were used for assessing the thermal
bioclimatic conditions at the selected synoptic weather sta-
tions. First, the hourly data were used for computing relative
frequencies of PET classes on a monthly basis and construct-
ing the bioclimatic diagrams for each examined region. These
diagrams are advantageous in that they provide valuable in-
formation on the seasonal variation of the thermal bioclimatic
conditions. In addition, time series diagrams of the daily PET

at 1200 UTC were constructed. The advantage of these dia-
grams is that they allow for an easy analysis of extreme values.
The selected time of the day for constructing the time series of
PET is justified by that it represents the most favorable ther-
mal conditions during winter and the worst in summer.

Bioclimatic and time series diagrams were constructed for
all regional groups of stations. For clarity, however, we pres-
ent only those referring to the North and South Greece and the
North and South Aegean. This particular selection enables us
to investigate the geographical gradient and regional depen-
dence of bioclimatic conditions in Greece. Nevertheless, it
should be noted that similar findings were also obtained for
the remaining regional groups of stations.

The numerical simulations, in agreement with the observa-
tions, indicate a typical seasonal variation of PET during the
examined yearly period. As seen in Figs. 3 and 4, cold stress
conditions (PET<13 °C) dominate from about November
until April, whereas heat stress (PET>29 °C) is found to
frequently occur in the summer. Interestingly, the summer

Fig. 2 Scatter plots between
observed (SYNOP) and model-
simulated (WRF) hourly PET for
awinter and b summer. The entire
dataset (all stations) of each
season has been used. The red line
depicts the implemented linear
least-square fit. Statistical
parameters are presented within
the plot. The number of
observations-model pairs used is
denoted with letter N
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Fig. 3 Thermal bioclimate
diagrams for North Greece: a
observed and b modeled; South
Greece: c observed and d
modeled. Monthly frequencies
were computed using the hourly
PET data
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Fig. 4 Thermal bioclimate
diagrams for North Aegean: a
observed and b modeled; South
Aegean: c observed and d
modeled. Monthly frequencies
were computed using the hourly
PET data
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months are also found to exhibit the highest frequencies,
exceeding 50 %, of neutral and near-neutral thermal condi-
tions (13 °C<PET<29 °C). February is modeled and ob-
served to be the month with the most occurrences of extreme
cold stress (PET<4 °C). However, the northern part of Greece
appears to be more prone to such bioclimatic conditions.
According to both model results and observations, during
February, about 90 % of the time PET drops below 4 °C in
North Greece (Fig. 3a, b) and North Aegean (Fig. 4a, b). This
percentage is lower in the case of South Greece (Fig. 3c, d)
and South Aegean (Fig. 4c, d), approximating 80 and 60 %,
respectively. During the summer period, the north-to-south
differentiation of PET is not as strong as in the winter. This
is particularly true for the continental country, where the
frequencies of strong/extreme heat stress (PET>29 °C) are
successfully modeled to be of about the same magnitude in
North (~35–45 %, Fig. 3b) and South Greece (~40–55 %,
Fig. 3d). Regarding the Aegean Sea, the differences in the
frequencies of PET>29 °C between the northern (Fig. 4b) and
southern part (Fig. 4d) are modeled to be larger. However, this
seems to be primarily due to the overestimation of PET>
35 °C in North Aegean (Fig. 4a, b).

Figure 5 presents the time series of the mean daily PET
values at 1200 UTC, at the selected synoptic weather stations.
Overall, the model manages to capture successfully the vari-
ation of bioclimatic conditions throughout the examined time
period, as highlighted by the computed correlation coeffi-
cients (R2>0.95, not shown). As seen in Fig. 5a, c, the north-
ern areas of Greece experience midday strong/extreme cold
stress (PET<8 °C) for a prolonged period spanning from late
October through early April. This period is much shorter in the
case of the southern country (Fig. 5b, d). Particularly for South
Aegean (Fig. 5d), it can be seen that midday extreme low PET
values rarely occur. Although the model appears to underes-
timate high PET values, mean values over 35 °C, indicating a
pronounced thermal stress level, are successfully simulated to
occur most frequently in South Greece (Fig. 5b). On the other
hand, South Aegean is modeled and observed to exhibit the
least occurrences of PET>35 °C.

The previous findings agree well with previous studies of
the thermal bioclimate of Greece. For instance, Matzarakis
and Mayer (1997) found that cold stress in South Greece
occurs mostly from October until April, while heat stress
conditions are most frequently observed from June until Sep-
tember. Moreover, the effect of the Etesian wind system on
reducing thermal stress in the Aegean Sea region has been
reported in previous studies (e.g., Matzarakis and Mayer
1997). This is in good agreement with the current study,
reporting South Aegean as the least prone geographical area
to heat stress during the summer.

As a synthesis of the previously reported results, Fig. 6
presents the modeled spatial distribution of the number of
days characterized by strong cold stress (PET<10 °C) and

strong heat stress (PET>30 °C) at 1200 UTC during January
(Fig. 6a) and July (Fig. 6b), respectively. The particular time
of the day for which the corresponding data are shown has
been already justified, while the selection of the 2 months
aims at contrasting wintertime and summertime conditions.

Under both wintertime and summertime conditions, it can
be seen that the spatial variation of days with PET<10 °C
(Fig. 6a) and PET>30 °C (Fig. 6b) correlates pretty well with
the spatial variations of topography (Fig. 1b). For instance, the
most mountainous regions of Greece are characterized for the
highest number of days with strong cold stress conditions
(Fig. 6a), whereas during summer, they are found to exhibit
the least days with strong heat stress conditions (Fig. 6b). In
agreement with past studies (e.g., Matzarakis and Mayer
1997), it is found that the inner parts of the Greek mainland
are the most prone to high PET values, contrary to the islands
of the Aegean Sea where the number of days with strong heat
conditions is generally lower (Fig. 6b).

Determinants of the thermal bioclimate

To evaluate the influence of environmental factors on the
thermal bioclimate of Greece, correlation matrices of air tem-
perature (TA), vapor pressure (VP), cloud cover (CC), wind
speed (WS), and mean radiant temperature (TMRT) against
PET were constructed. The investigation of the intercorrela-
tion between the selected thermal index and the meteorolog-
ical parameters was carried out into two stages. First, the
determinants of the daytime (1200 UTC) and nocturnal
(0300 UTC) thermal bioclimate were investigated (Table 5).
At a second stage, the 1200 UTC winter (DJF) and summer
(JJA) subsets of data were used for examining the determi-
nants of strong cold stress (PET<10 °C) and strong heat stress
(PET>30 °C), respectively (Table 6). The selection of the time
period has been previously justified as representing the most
favorable conditions in winter and the worst in summer. The
presented results (Tables 5 and 6) refer to the regional groups
of stations that were previously defined, although similar
results were obtained for the rest of the stations.

TA and TMRT appear to be the variables with the greatest
influence on PET during both day and night (Table 5). In
particular, the numerical simulations, in good agreement with
the observations, indicate a slightly more pronounced influ-
ence of air temperature (R2>0.95) as compared to that of mean
radiant temperature (R2<0.95). VP is found to be the meteo-
rological parameter with the third greatest impact on PET. As
seen in Table 5, the impact of VP is successfully simulated to
be more pronounced during the night (R2>0.80) than during
the day (R2<0.80). Contradicting daytime and nighttime, the
most striking feature is found to be the impact of CC. Clearly,
CC appears to influence PET values to a greater extent during
the daytime than during the night. As regards WS, its influ-
ence on thermal stress is found to be less pronounced than that
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of the other variables (Table 5), although the model generally
overestimates its importance.

Looking at Table 5, one can finally notice that the deter-
minants of PET are, more or less, common to all examined
sites, irrespective of the geographical group they belong to.
This is particularly true for the key variables of TA and TMRT,
as well as for VP.

Although the model appears to generally underestimate the
importance of TMRT in determining extreme PET values, the
relative significance of the examined meteorological variables is
adequately reproduced (Table 6). According to both the numer-
ical simulations and observations, TA is the key determinant of
PET<10 °C in the winter, followed by VP and WS, whereas
TMRT is found to play a less pronounced role (Table 6), possi-
bly due to the reduced incoming solar radiation. Not surprising-
ly, the importance of TMRT increases significantly in the sum-
mer. As seen in Table 6, strong heat stress conditions (PET>
30 °C) are mostly determined by TMRT and TA. Contrary to
what has been modeled and observed for the winter, VP is now
found to have a negligible contribution (R2<0.10) to summer
PET values exceeding 30 °C. As for the WS, the data presented
in Table 6 suggest a lower impact on PET>30 °C than on PET<
10 °C values. Nevertheless, it can be seen that the numerical
simulations tend to overestimate its significance.

Discussion

The study of the thermal bioclimate can provide useful infor-
mation for decisionmaking on various levels including health,
tourism, and regional planning. Numerical models, which can
be coupled with human-response models, are considered to be
one valuable tool for this purpose. In the present study, the
meteorological WRF model and the human-response model
RayMan are synergistically used to assess the thermal
bioclimate of Greece during a 1-year time period. This repre-
sents a valuable step for identifying the strengths and weak-
nesses of numerical modeling techniques in terms of repro-
ducing thermal bioclimatic conditions. This kind of informa-
tion could be exploited for improving regional model simula-
tions, an issue of particular importance for regions such as the
Mediterranean, where the projected climate change is expect-
ed to significantly deteriorate thermal bioclimate (Matzarakis
and Nastos 2011).

The validation of the model-simulated thermal bioclimate,
using synoptic weather station data and selecting PET as an

�Fig. 5 Modeled (lines) and observed (points) mean daily values of PET
at 1200 UTC for aNorth Greece, b South Greece, cNorth Aegean, and d
South Aegean, for the year 2003.Dashed lines denote the levels of strong/
extreme cold (PET<8 °C) and strong/extreme heat (PET>35 °C) stress
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index, suggests an overall satisfactory model performance.
The comparison between the WRF-modeled and observed
PET values revealed a rather good level of agreement, char-
acterized by mean biases that did not exceed 1.5 °C and
RMSE values lower than 4 °C. The general pattern of the
seasonal variation of thermal bioclimatic conditions was
reproduced adequately well, in agreement with both the ob-
servations and earlier studies (e.g., Matzarakis and Mayer
1997). The WRF simulations have also proven to be

successful in terms of replicating the temporal variations of
midday extreme PET values.

Despite the positive sides, the conducted analysis
also revealed particular weaknesses in the adopted nu-
merical modeling approach. Most importantly, it was
found that the WRF-simulated thermal bioclimate is
systematically biased cold. Additionally, results indicate
that the model’s biases exhibit both seasonal and geo-
graphical dependence.

Fig. 6 Modeled number of days:
a with strong cold stress
conditions (PET<10 °C) during
January 2003 and b with strong
heat stress conditions (PET>
30 °C) during July 2003
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Summertime meteorological conditions have proven to be
harder to model, resulting to considerably underestimated
PET values. In particular, the differences between the WRF-
simulated and observed PET were found to be larger for the
higher values than for the lower values. Part of this uncertainty
could be due to the underestimation of air temperature, which
tends to be more pronounced during the warm part of the year.
For instance, Katsafados et al. (2011) reported greater cold
biases in their WRF simulations of air temperature over
Greece during the summer than during the winter. Giannaros
et al. (2013a) and Miao et al. (2007) also documented the
underestimation of air temperature in their mesoscale numer-
ical simulations.

Besides the underestimation of air temperature, the results
of this study suggest uncertainties in the computation of mean
radiant temperature, which plays a key role in determining

summertime thermal bioclimatic conditions. The lower than
observed WRF-simulated PET indicates that the mean radiant
temperature is underestimated. This underestimation could be,
at least partially, attributed to the uncertainties in the modeled
air temperature, which influences the computation of long-
wave radiation fluxes within RayMan (Matzarakis et al.
2010). Another contributing factor could be the WRF-
modeled cloud cover. Uncertainties in the simulation of cloud
cover (e.g., Lara-Fanego et al. 2012) are expected to influence
the RayMan-simulated global radiation and, thus, the mean
radiant temperature (Matzarakis et al. 2010).

Another important factor that should be also included at
this juncture of discussion is the potential impact of wind
speed on the computed PET values. Recently, Giannaros
et al. (2013b) reported that WRF tends to overestimate wind
speed, in particular over the Aegean Sea. Higher than the

Table 5 Modeled and observed correlation coefficients (R2) between PET and meteorological parameters in the daytime (1200 UTC) and nighttime
(0300 UTC). All correlation coefficients are statistically significant (α=0.05)

Region Correlation matrix

Time period TA VP CC WS TMRT

Obs Mod Obs Mod Obs Mod Obs Mod Obs Mod

North Greece Daytime 0.98 0.97 0.69 0.77 0.22 0.15 0.08 0.18 0.94 0.93

Nighttime 0.99 0.99 0.81 0.89 0.06 0.00 0.06 0.15 0.94 0.93

South Greece Daytime 0.98 0.96 0.50 0.57 0.46 0.24 0.02 0.20 0.93 0.92

Nighttime 1.00 0.99 0.78 0.89 0.33 0.20 0.02 0.21 0.91 0.92

North Aegean Daytime 0.98 0.97 0.66 0.55 0.42 0.33 0.15 0.30 0.91 0.94

Nighttime 0.99 0.99 0.89 0.89 0.30 0.08 0.18 0.21 0.91 0.89

South Aegean Daytime 0.97 0.93 0.52 0.65 0.39 0.22 0.02 0.10 0.89 0.88

Nighttime 0.99 0.97 0.73 0.85 0.26 0.07 0.04 0.09 0.87 0.88

Table 6 Modeled and observed correlation coefficients (R2) between the
specified PET classes and meteorological parameters at 1200 UTC. The
winter (DJF) and summer (JJA) subsets of data have been used for the

PET<10 °C and PET>30 °C classes, respectively. All correlation coef-
ficients are statistically significant (α=0.05)

Region Correlation matrix

PET classes TA VP CC WS TMRT

Obs Mod Obs Mod Obs Mod Obs Mod Obs Mod

North Greece PET<10 °C 0.88 0.73 0.45 0.26 0.01 0.00 0.18 0.57 0.36 0.21

PET>30 °C 0.88 0.75 0.07 0.01 0.05 0.00 0.08 0.16 0.85 0.62

South Greece PET<10 °C 0.83 0.78 0.35 0.30 0.02 0.01 0.21 0.43 0.12 0.14

PET>30 °C 0.77 0.53 0.02 0.15 0.10 0.00 0.05 0.40 0.96 0.67

North Aegean PET<10 °C 0.93 0.95 0.58 0.50 0.07 0.01 0.42 0.25 0.17 0.33

PET>30 °C 0.68 0.76 0.01 0.04 0.03 0.00 0.30 0.32 0.82 0.85

South Aegean PET<10 °C 0.77 0.66 0.28 0.39 0.00 0.01 0.22 0.22 0.16 0.20

PET>30 °C 0.80 0.80 0.09 0.05 0.02 0.09 0.19 0.01 0.88 0.78

162 Int J Biometeorol (2015) 59:151–164



observed model-simulated wind velocities could result to
underestimated PET values. This seems to be confirmed in
this study, especially if one looks at the simulated thermal
bioclimate for the Aegean Sea. In particular, the overestima-
tion of the occurrences of low PET values could be due to the
overestimated wind regime of this particular geographical
region (Giannaros et al. 2013b).

The results of this study indicate that numerical modeling
can provide a useful tool for the assessment of the thermal
bioclimate. The meteorological WRF model, in particular,
appears to be one attractive solution for this problem. As it
was shown and discussed, it is capable of reproducing the key
features of the thermal bioclimate of the complex Greek
territory. However, there is still room for developments in
order to address the previously discussed inadequacies. Most
importantly, we should focus on improving the quality of
numerical forecasts. This is considered to be critical for
allowing for a more accurate representation of the environ-
mental conditions determining the thermal bioclimate. An in-
depth analysis of the meteorological model’s schemes and
parameterizations, conducting sensitivity cases studies, could
contribute toward this direction. In addition, increasing the
horizontal resolution of the simulations should be also exam-
ined as a potential method for improving model performance.

Conclusions

In the present study, the thermophysiologically significant
evaluation of the thermal environment of Greece was accom-
plished by means of coupling a state-of-the-art numerical
weather prediction model, namely the WRF, with the model
RayMan in order to compute PET. Synoptic weather station
data were used for evaluating the model performance. Despite
the reported deficiencies, the presented approach showed
good adequacy in replicating the thermal bioclimate of the
study area during a 1-year time period. Overall, PET was
simulated well by the WRF model. The model was found to
perform better over the relatively simple terrain of insular
Greece than over continental Greece, which suggests that a
higher horizontal resolution may be required for improving
the accuracy of the numerical simulations.

The importance of the current study is not just limited to
investigating the ability of a particular numerical weather
prediction model in terms of reproducing the meteorological
conditions that together determine the thermal bioclimate.
Numerical models, such as the one used in this study, could
be employed to serve a variety of purposes in the context of
human biometeorology. These purposes vary from integrating
the prediction of thermophysiologically significant indices
into operational weather forecasting activities, to conducting
case studies for supporting urban planning and tourism devel-
opment. For this, numerical weather prediction models should

be continuously evaluated in order to identify the required
developments for improving the simulation of thermal
bioclimate.
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