
RE S EARCH ART I C L E

Climatology and trends of the Euro-Mediterranean thermal
bioclimate

Theodore M. Giannaros1 | Vassiliki Kotroni1 | Konstantinos Lagouvardos1 | Andreas Matzarakis2,3

1National Observatory of Athens, Institute for
Environmental Research and Sustainable
Development, Athens, Greece
2Research Center Human Biometeorology,
German Meteorological Service, Freiburg,
Germany
3Chair of Environmental Meteorology, Faculty of
Environment and Natural Resources, Albert-
Ludwigs University, Freiburg, Germany

Correspondence
T. M. Giannaros, National Observatory of Athens,
Institute for Environmental Research and
Sustainable Development, Vas. Pavlou &
I. Metaxa, 15236 Penteli, Athens, Greece.
Email: thgian@noa.gr

Funding information
European Commission, Grant/Award Number:
675121

High-resolution numerical simulations were carried out for the most recent 30-year
period (1987–2016), focusing on the Euro-Mediterranean region. A sophisticated
thermo-physiologically significant thermal index, namely the physiologically
equivalent temperature (PET), was computed for assessing the thermal bioclimate
of the study area and for investigating the presence of long-term trends, focusing
on bioclimatic extremes. Results indicate that the Euro-Mediterranean thermal bio-
climate follows a zonal pattern, upon which topography acts to delineate regional
maxima and minima. The conducted time series analysis reveals statistically sig-
nificant trends that are generally more pronounced for cold extremes. In particular,
it is found that the number of days with cold (hot) stress has decreased
(increased), with the distribution of PET exhibiting warming of both its cold and
warm tail. The south–east Mediterranean and the Balkans are found to be the most
responsive to bioclimatic changes, showing coherent and statistically significant
warming trends. Overall, the results of this study provide a new point of view of
the Euro-Mediterranean climate, which could be of usefulness in a wide range of
future applications. The detailed spatio-temporal bioclimatic data could be
exploited, for instance, to support applications related to tourism and recreation,
highlighting regions with favourable or less favourable thermal comfort condi-
tions. Furthermore, the trend data could be employed for quantifying the vulnera-
bility of certain regions to cold and heat stress, in the context of public health
applications.
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1 | INTRODUCTION

The influence of ambient thermal conditions on the human
body has been a prominent and debated topic in the litera-
ture for more than 50 years (Büttner, 1938; Fanger, 1970;
Jendritzky, 1991; Kerslake, 1972; Parsons, 2003; Sibbons,
1966). Over the last two decades, human biometeorology,
the sub-discipline of biometeorology studying the interac-
tions between the atmospheric environment and human
beings, has been experiencing resurgence as a result of the
increasing concern about the impact of weather and climate

on human health and well-being, especially in the context
of climate change (McGregor, 2011). Within this context,
several researchers (Jendritzky & Tinz, 2009; Junk, Matzar-
akis, Ferrone, & Krein, 2014; Kovats & Jendritzky, 2006;
Laschewski & Jendritzky, 2002; Parsons, 2003) have
highlighted that the most significant environmental informa-
tion that can be provided to support maintenance of human
health, performance and well-being, are thermal conditions.
This has been dramatically demonstrated during the excep-
tionally hot summer of 2003 in Europe (Schär & Jendritzky,
2004), when a heat-related death toll of more than 50,000
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was recorded (Kosatsky, 2005; Muthers, Laschewski, &
Matzarakis, 2017; Robine et al., 2008).

The paramount importance of the thermal environment
for human health is attributed to the close relationship
between the circulatory system and the thermoregulatory
mechanism of the human body (Matzarakis & Amelung,
2008; Matzarakis, Muthers, & Koch, 2011). According to
the British Occupational Hygiene Society (BOHS, 1996),
the latter is responsible for balancing the human heat budget
to external thermal conditions and, consequently, determin-
ing the body’s internal core temperature. Any disruption of
this balancing process will result to a net heat gain/loss,
generating heat/cold stress. Heat stress takes place “when a
person’s environment (air temperature, radiant temperature,
humidity and air velocity), clothing and activity interact to
produce a tendency for body temperature to rise” (Parsons,
2011). On the other hand, “a thermal load on the body
under which greater than normal heat losses are anticipated
and compensatory thermoregulatory actions are required to
maintain the body thermally neutral” (Holmer, 2011) is
defined as cold stress. As for thermal comfort, this can be
defined as “that condition of mind which expresses satisfac-
tion with the thermal environment” (Fanger, 1972; ISO7730,
2005; Parsons, 2003). Therefore, the term “thermal
environment,” which is also referred to as the “thermal
bioclimate,” ingests both the heat exchanges between the
human body and the atmospheric environment (thermal
stress), and the body’s physiological response (thermal strain;
Jendritzky & Tinz, 2009; Matzarakis & Amelung, 2008).

Up to nowadays, the thermal influence of the environ-
ment on the human body has been most often assessed in
terms of a single parameter, primarily air temperature, or a
composite thermal index combining two or more standard
meteorological variables (e.g., Carder et al., 2005;
Diffenbaugh, Pal, Giorgi, & Gao, 2007; Gosling, Lowe,
McGregor, Pelling, & Malamud, 2009; Orosa, Costa, Rodrí-
guez-Fernández, & Roshan, 2014; Poupkou, Nastos,
Melas, & Zerefos, 2011; Segnalini, Nardone, & Bernabucci,
2011). From a human-biometeorological point of view,
however, this is an inappropriate approach since it neglects
several important factors (Matzarakis & Amelung, 2008).
These factors were first defined by Fanger (1970) and
include air temperature, vapour pressure (humidity), air
velocity, solar and thermal radiation (environmental parame-
ters), metabolic heat and clothing insulation (personal
parameters). In terms of these fundamental parameters,
human biometeorology attempts to predict, at best approxi-
mation, how a person feels in a given thermal environment
(Vanos, Warland, Gillespie, & Kenny, 2010). In this sense,
the effects of all thermal components and the complex inter-
actions between physiology, psychology and behaviour
(Yao, Li, & Liu, 2009) need to be taken into account, lead-
ing to “the necessity of modelling the human heat balance”
(Büttner, 1938).

There is currently a wide array of heat budget-based
thermal comfort models (Vanos et al., 2010), which satisfy
the fundamental condition that for each index value and
regardless of the nature of thermal stress, there is a respec-
tive and unique outcome in terms of thermal strain
(Błażejczyk, Epstein, Jendritzky, Staiger, & Tinz, 2011).
These thermal assessment models are founded on some
form of the heat balance equation (Błażejczyk, 1994;
Brown & Gillespie, 1986; Fanger, 1972; Höppe, 1999; Jen-
dritzky & Nübler, 1981; Parsons, 2003). Thus, they con-
sider the production of internal heat by metabolic activity,
required for carrying out physical and mental activities, and
the body-atmosphere heat exchanges by conduction (con-
tact), convection (sensible heat), evaporation (latent heat),
respiration (sensible and latent heat) and radiation (short-
wave and longwave; Jendritzky & Tinz, 2009).

The implementation of comprehensive thermal assess-
ment models eventually allows for “translating” climate and
weather data into human bioclimatological information.
Geostatistical methods can be then used for spatially depict-
ing bioclimatic data on maps (e.g., Daneshvar, Bagherza-
deh, & Tavousi, 2013; Lin & Matzarakis, 2011; Matzarakis,
Rutz, & Mayer, 2010; Morillón-Gálvez, Saldana-Flores, &
Tejeda-Martinez, 2004; Svensson, Thorsson, & Lindqvist,
2003; Topay, 2013). However, the accuracy of this method
depends heavily on the availability and quality of point data
(i.e., observations; Zygmuntowski, Matzarakis, Koch, &
Rudel, 2005). When no sufficient observations are available,
numerical modelling can provide a convenient alternative
solution (Giannaros, Melas, & Matzarakis, 2015).

This paper presents a first attempt to produce a human
bioclimatic atlas for the Euro-Mediterranean region, based
on high-resolution numerical simulations carried out for a
30-year period. The key aim is to provide a detailed map-
ping of the thermal bioclimate, investigating also the pres-
ence of any long-term trends, in particular focusing on
extremes. It is thus anticipated that the conducted analysis
will contribute to a better understanding on how the com-
plex physiography of the study area regulates the spatial
variability of thermal comfort. Furthermore, the study area
itself presents high scientific and socio-economic interest,
highlighted as one of the most responsive climate-change
hot-spots (Giorgi, 2006) and the world’s leading tourist des-
tination (United Nations World Tourism Organization
(UNWTO), 2009). Therefore, the results of this study could
be also exploited for tourism and recreation applications
(e.g., Brosy, Zaninovic, & Matzarakis, 2014; De Freitas,
Matzarakis, & Scott, 2007; Endler & Matzarakis, 2011), as
well as for quantifying the vulnerability of certain regions
to cold and heat stress (e.g., Nastos & Matzarakis, 2006,
Muthers, Matzarakis, & Koch, 2010). In this wider sense,
the present work deviates from past studies that could be
considered to be relevant, but focused on deriving future
projections without investigating in detail present human
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bioclimatic conditions. In addition, they often adopted
coarse spatial resolutions (e.g., Jendritzky & Tinz, 2009;
Matzarakis & Amelung, 2008), considered a particular type
of thermal stress (e.g., Amengual et al., 2014) or even
applied a non-thermo-physiological approach (e.g., Diffen-
baugh et al., 2007).

2 | MATERIALS AND METHODS

2.1 | Study area

This study focuses on the European Mediterranean
(Figure 1a), a region that has been reported to be one of the
most responsive climate change hot-spots (Giorgi, 2006).
Climatologically, the study area is characterized as highly
heterogeneous (Bolle, 2002). The weather patterns and the
climate of the Mediterranean are strongly influenced by dry
warm air originating from North Africa, dry cold air coming
from the Atlantic Ocean, and moist warm air from the Med-
iterranean Sea itself (Lionello et al., 2006). The physiogra-
phy of the region itself is also highly complex (Figure 1a),
so that fine-scale processes associated with the land/sea con-
trast, land use heterogeneity and the complicated topogra-
phy are expected to play a key role in shaping the

magnitude and the spatial variability of thermal bioclimatic
conditions.

2.2 | Numerical modelling strategy

Numerical simulations were conducted with the Weather
Research and Forecasting (WRF) model, version 3.7.1
(Skamarock et al., 2008). The model was configured with
the Lin microphysics parameterization (Lin, Farley, &
Orville, 1983) and the RRTMG (Rapid Radiative Transfer
Model) scheme for parameterizing shortwave and longwave
radiation (Iacono et al., 2008). The Yonsei University
(YSU) scheme (Hong, Noh, & Dudhia, 2006) was chosen
for representing planetary boundary-layer processes,
coupled with the MM5 similarity surface-layer parameteri-
zation (Zhang & Anthes, 1982). Land-surface processes
were handled with the Unified Noah land-surface model
(Tewari et al., 2004), while convection was parameterized
with the Grell three-dimensional (3D) ensemble scheme
(Grell & Devenyi, 2002).

A single domain with a horizontal grid spacing of 0.11�

× 0.11� (~12 × 12 km2) and a mesh size of 738 × 497 grid
points was defined for carrying out the simulations
(Figure 1b). The modelling domain extends from 2o to

FIGURE 1 (a) Zoom over the study area
with identification of the analysis regions
[IP: Iberian Peninsula (−10�–3�E, 36�–
44�N), FR: France (−6�–5�E, 44�–49�N),
AL: Alps (5�–15�E, 44�–48�N), CMD:
Central Mediterranean (3�–19�E, 36�–
44�N), BL: Balkans (19�–30.5�E, 42�–
49�N), SMD: south–east Mediterranean
(19�–35�E, 34�–42�N)]. (b) Model-
resolved topography in the numerical
simulation domain. The colour scale is
common to both maps [Colour figure can
be viewed at wileyonlinelibrary.com]
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60oN, and from 20oW to 62�E. In the vertical, 35 unequally
spaced full sigma levels were defined, with the model top
set at 50 hPa. The 0.75� × 0.75� spatial resolution and 6 hr
temporal resolution ERA-Interim global reanalysis dataset
(Dee et al., 2011) was employed for driving the WRF simu-
lations. The model was implemented for the 30-year period
extending from January 1, 1987 to December 31, 2016. The
numerical simulations were conducted by reinitializing
WRF every 10 days with the ERA-Interim reanalysis data
and including an overlap period of 12 hr for each simulation
block for spinning up meteorology. Sea-surface temperature
was updated at 6 hr intervals and no nudging was applied.

2.3 | Thermal assessment strategy

The physiologically equivalent temperature (PET) thermal
assessment scheme (Höppe, 1999) was used for evaluating

the thermal bioclimate of the study area. This scheme is
based on the Munich Energy Balance Model for Individuals
(MEMI), which simulates the thermal condition of the
human body in a thermo-physiologically significant way
(Höppe, 1993). PET can be defined as the air temperature at
which, in a typical indoor environment with the absence of
wind and solar radiation, the heat budget of the human body
is balanced with the same skin and internal core temperature
as under the influence of the complex outdoor conditions
that are assessed. Following Höppe (1999) and Matzarakis,
Mayer, and Iziomon (1999), the effect of air temperature on
PET is taken into account through the convective heat flow
and the heat flows used for heating and humidifying the air
that is respired. The water vapour influence is restricted to
the exchange of latent heat through diffusion and respiration
via the skin, whereas latent heat fluxes originating from the
evaporation of sweat are not considered. The effect of wind
is accounted for through the heat loss by evaporation and
convection. The mean radiant temperature (TMRT) of the
surroundings is used for considering the net radiation of the
human body, while thermo-physiology is taken into account
by means of human activity (added to a reference metabolic
heat production rate) and clothing insulation.

PET is a comfort-based thermal index that, apart from
being thermo-physiologically relevant, has the advantage of
a widely known unit (i.e.,

�
C). This facilitates its interpreta-

tion and communication to people and stakeholders that are
not familiar with the terminology of human biometeorology.
The assessment scale of PET (Table 1) is derived by com-
puting the predicted mean vote (PMV; Fanger, 1972) for
different air temperatures in the reference environment,
using the reference person’s setting (Matzarakis & Mayer,
1997). This assessment scale classifies PET values accord-
ing to human thermal perception and thermo-physiological
response, in compliance with the standard nine-point ASH-
RAE (American Society for Heating Refrigerating and Air-
Conditioning Engineers) thermal sensation scale.

2.3.1 | Computation of PET

The RayMan Pro model (Matzarakis, Rutz, & Mayer, 2007,
2010), version 2.3, was employed for calculating PET. Ray-
Man is a radiation and human bioclimate micro-scale
model, which allows for deriving thermal assessment indi-
ces, including PET, on the basis of computing TMRT and
solving the human heat balance equation. The WRF simula-
tions (section 2.2) were employed for deriving the forcing
data for RayMan, that is 2-m air temperature and relative
humidity, wind speed (interpolated to 1.1 m, which approxi-
mates the weighting height of the human body, following
Charalampopoulos, Tsiros, Chronopoulou-Sereli, & Matzar-
akis, 2013), global radiation and surface temperature. Due
to computational restrictions, the model was implemented
only for the WRF’s land grid points between 32o and 49oN,
and 10oW and 36.5�E (Figure 1a). PET was consequently

TABLE 1 Ranges of PET for different grades of human thermal
perception and thermo-physiological stress (Source: Matzarakis &
Mayer, 1997)

PET (�C) Thermal perception Thermo-physiological response

< 4 Very cold Extreme cold stress

4–8 Cold Strong cold stress

8–13 Cool Moderate cold stress

13–18 Slightly cool Slight cold stress

18–23 Comfortable No thermal stress

23–29 Slightly warm Slight heat stress

29–35 Warm Moderate heat stress

35–41 Hot Strong heat stress

>41 Very hot Extreme heat stress

TABLE 2 Definitions of the 10 PET-based indices used for evaluating
thermal bioclimate extremes. Unless explicitly indicated, indices are
computed using both 0000 UTC and 1200 UTC PET values, representing
night-time and daytime conditions, respectively

Index Description Definition Units

PET8 Cold nights Annual count of days with
PET<8 �C at 0000 UTC

Days

PET4 Very cold
nights

Annual count of days with
PET<4 �C at 0000 UTC

Days

PET35 Hot days Annual count of days with
PET>35 �C at 1200 UTC

Days

PET41 Very hot days Annual count of days with
PET>41 �C at 1200 UTC

Days

PETn Coldest
day/night

Monthly minimum value of PET oC

PETx Hottest
day/night

Monthly maximum value of PET oC

PETp95 Extremely hot
PET

Annual 95th percentile PET oC

PETp75 Very hot PET Annual 75th percentile PET oC

PETp5 Extremely
cold PET

Annual 5th percentile PET oC

PETp25 Very cold
PET

Annual 25th percentile PET oC
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computed for 0000 UTC and 1200 UTC in order to derive,
at best approximation, the minimum and maximum thermal
perception of each day (Amengual et al., 2014). The human
biometeorological assessment of thermal perception,
expressed via PET, was conducted, after Matzarakis
et al. (1999), for a standard 35-year-old male, 1.75-m tall,
weighting 75 kg, wearing clothes with an insulation of 0.90
clo (1 clo corresponds to heat resistance of 0.155 K W−1)
and having a metabolic heat production rate of 80 W (light
activity).

2.4 | Bioclimate extremes

The analysis of the Euro-Mediterranean thermal bioclimate
was conducted using a set of 10 PET-based indices, defined
at 0000 UTC and/or 1200 UTC (Table 2). These indices
were specified so as to represent absolute bioclimate
extremes (PETn, PETx), threshold-dependent extremes
(PET8, PET4, PET35, PET41) and percentile-based
extremes (PETp95, PETp75, PETp5, PETp25). All calcula-
tions were carried out with the ICCLIM (Indice Calculation
CLIMate) python library, version 4.2.9 (https://github.com/
cerfacs-globc/icclim) and/or the Climate Data Operators
(https://code.mpimet.mpg.de/projects/cdo/), version 1.7.0.

Maps of the spatial pattern of the indices, averaged over
the 1987–2016 period, were constructed for compiling the
recent climatology of Euro-Mediterranean thermal biocli-
mate. For evaluating the presence of long-term trends, the
nonparametric Mann–Kendall (MK) test (Kendall, 1976;
Mann, 1945) was employed. The pre-whitening test of Yue-
Pilon (Yue, Pilon, Phinney, & Cavadias, 2002) was applied
prior to the implementation of the MK test in order avoid
the effect of any positive serial correlation in the examined
datasets. For this purpose, the ZYP package of R (https://
cran.r-project.org/web/packages/zyp/index.html) was used.

2.5 | Observations and evaluation procedure

Recent studies have shown that the fluctuations of air tem-
perature are the key determinant of PET’s variations
(Basarin et al., 2017; Chen & Matzarakis, 2017; Giannaros
et al., 2015). Considering this, prior to the assessment of the
thermal bioclimate of the study area, the performance of the
WRF model was evaluated focusing on air temperature. The
E-OBS version 15.0 (hereafter referred to as EOBS15) daily
minimum (TN) and maximum (TX) temperature data
(Haylock et al., 2008), available on a regular 0.25� x 0.25�

grid, were employed for assessing the spatial variability of
model bias. Taking into account the difficulty in interpreting
the whole annual bias, which stems from the different
model behaviour depending on the season (Garciá-Diéz,
Fernández, Fita, & Yagüe, 2013), the analysis was carried
out on a seasonal basis, focusing on winter (DJF) and sum-
mer (JJA). In addition and to draw the wider picture, a com-
parison of mean annual cycles, spatially averaged over six

different regions (Figure 1a), was conducted. It should be
noted that despite the recently reported inaccuracies in the
E-OBS dataset (Hofstra, Haylock, New, & Jones, 2009;
Kysely & Plavcova, 2010), the relevant mean climatologies
are considered to be of reasonable quality (Herrera, Fita,
Fernández, & Gutiérrez, 2010) and the presented work will
only use these.

To allow for comparisons, the WRF data were bilinearly
interpolated to the EOBS15 grid. The model bias was then
computed by subtracting the observed from the simulated
gridded data. The statistical significance of the differences
was verified with a two-independent sample t test
(Katragkou et al., 2015). The carried out model evaluation
aims at providing basic evidence with respect to the accu-
racy of the model and the associated uncertainties, which
need to be taken into account for the assessment of the ther-
mal bioclimate and the investigation of its long-term trends
during the examined time period.

3 | RESULTS

3.1 | Model evaluation

Figure 2 shows the DJF and JJA TX and TN bias of the
WRF model, averaged over the 1987–2016 period. A first
look reveals that although the model in general underesti-
mates temperatures, differences exist between the examined
seasons and variables. In winter, the simulated TX is found
to differ significantly (at the 95% confidence level) from the
observations over the largest part of the study area, showing
biases of approximately −2 �C on average (Figure 2a). TN
shows generalized non-significant cold biases over most of
the domain, while statistically significant warm biases of up
to 2 �C are found mainly over the Iberian Peninsula (IP;
Figure 2b). For both TX and TN, the largest negative
biases, reaching −6 �C in the case of TN, are found primar-
ily over the Alpine ridge and over regions characterized by
steep orography. This is a feature that is rather common to
WRF simulations (e.g., Katragkou et al., 2015; Kioutsioukis
et al., 2016; Kotlarski et al., 2014), attributed, at least par-
tially, to the treatment of physics over snow-covered areas.

Summertime TX shows widespread statistically signifi-
cant cold biases that reach −3 �C in regions with good
EOBS15 data quality (e.g., Spain; Figure 2c). Larger nega-
tive biases, exceeding −5 �C, are found for several grid
points across the domain, mainly over the Balkans (BL) and
the northern regions of Turkey. On the other hand, the
model is found to be less biased cold for TN, with general-
ized non-significant negative biases dominating the largest
part of the Euro-Mediterranean region (Figure 2d). Statisti-
cally significant warm biases of up to 2–3 �C are mainly
found over the eastern part of the domain. The large area of
warm bias emerging over North Africa, evident in both TX
and TN, has been also reported in previous modelling
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studies (Garciá-Diéz, Fernández, & Vautard, 2015; Katrag-
kou et al., 2015; Kioutsioukis et al., 2016) and is most prob-
ably attributed to the excessive interpolation of scarce
EOBS data (Garciá-Diéz et al., 2013).

The presented maps in Figure 2 indicate the existence of
a seasonal dependence of model bias, with differences also
existing between maximum and minimum temperatures.
Hence, it can be assumed that different biases exist in differ-
ent parts of the temperature range. To verify this, the meth-
odology of Garciá-Diéz et al. (2013), based on the
construction of quantile–quantile (q-q) plots, was employed.
In this context, the distributions of the simulated TX and
TN (y-axis) were compared against observations (x-axis),
by dividing the entire probability range into 19 pieces
(i.e., considering a quantile every 5%). This kind of repre-
sentation allows for highlighting deviations in the probabil-
ity distribution (denoted as departures from a straight
diagonal line), biases (denoted as shifts), variability differ-
ences (denoted as straight lines with different slopes) and
asymmetries (denoted as curved lines). Q-q plots were con-
structed for the six specified regions of the European Medi-
terranean (Figure 1a), for both TX and TN. No averaging
was carried out for computing the quantiles.

As shown in Figure 3, the model behaviour differs
depending on both the region considered and the tempera-
ture. DJF and JJA TX (Figure 3a) present systematic cold
biases over the warmest of the examined regions, namely
IP, Central Mediterranean (CMD) and south–east Mediterra-
nean (SMD). Over these regions and for both seasons, the
simulated and observed TX follow the same probability dis-
tribution, as highlighted by the alignment of the points
along an approximately straight line, with all the WRF-

derived quantiles shifted 1–2 �C to cooler temperatures. The
distributions of observed and modelled TX are found to dif-
fer over the remaining three regions, with the coolest Alps
(AL) and BL showing similarities in terms of model behav-
iour. In particular, asymmetries are evident in the simulated
DJF TX, since the points in the q-q plots appear to follow
slightly curved lines, with the largest biases (up to −3 �C
for AL and −2 �C for BL) found for the lowest quantiles
(temperatures below 0 �C).

Focusing on minimum temperatures (Figure 3b), the
model shows a rather consistent behaviour. In almost all
regions, the modelled and observed wintertime distributions
of TN differ more on the lower quantiles. This is most pro-
nounced in the AL and BL regions, in which biases reach
up to −6 and −3 �C on the lowest 5% quantiles, respec-
tively. This reflects what has been earlier noted to be a com-
mon feature of WRF simulations in cold and often snow-
covered areas. In the rest of the regions, the differences
between the model and the observations do not exceed
1–2 �C, with lowest values found on the upper quantiles. In
summer and in five of the six regions, the points in the q-q
plots are aligned along straight lines that deviate from the
diagonals, suggesting differences between the probability
distributions of observed and simulated TN. In particular,
the lower quantiles of TN are found to be biased cold in all
regions. This bias appears to disappear in upper quantiles,
while in the warmer IP and SMD regions; it even turns to
positive values (overestimation) when TN exceeds
19–20 �C. Under all cases, the JJA observed and model-
derived quantiles show differences that do not exceed 2 �C.

The results of the gridded verification and the q-q analy-
sis focusing on DJF and JJA provide evidence for a
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FIGURE 2 Daily maximum (a, c) and minimum (b, d) temperature bias (WRF–EOBS15), averaged over the 1987–2016 winter (top row) and summer
(bottom row). Units are in �C. Hatching indicates grid points where the biases are not statistically significant (α = .05) [Colour figure can be viewed at
wileyonlinelibrary.com]
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FIGURE 3 Quantile–quantile plots for the daily (a) maximum and (b) minimum temperature, and for the six regions (rows) of the study area. Mind the
differences in the axes’ scales
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reasonable overall model performance. In addition, the pre-
sented maps indicate that spatial autocorrelation is generally
large enough to allow for deriving meaningful spatial aver-
ages. Hence, mean monthly annual cycles were constructed
for each of the specified regions of the European Mediterra-
nean (Figure 1a) to get a more detailed perspective of the
temporal evolution of model performance.

As shown in Figure 4, the model reproduces success-
fully the basic characteristics of the mean annual cycles of
both temperatures in all regions. The annual cycles are
found to be generally biased cold, particularly with respect
to maximum temperatures. For the latter, biases are gener-
ally larger in summer and winter, though they do not exceed
2 �C in magnitude. In spring and autumn, the modelled
mean monthly TX is found to be within 1 �C from observa-
tions. Considering TN, biases are found to reach up to
−1 �C, mostly pronounced in winter and early spring.

3.2 | Overview of bioclimatic conditions

Thermal bioclimate diagrams (Matzarakis, 2007; Zanino-
vic & Matzarakis, 2009) were constructed for each of the

examined regions (Figure 5) in order to draw the general
picture of the prevailing bioclimatic conditions. These dia-
grams present the frequencies of the simulated 0000 UTC
and 1200 UTC PET values, computed over 10-day intervals
for the 1987–2016 period.

In the night-time (Figure 5a) and in all regions, neutral
and near-neutral thermal conditions (13 �C < PET<29 �C)
occur from late spring to early summer [third (first) 10-day
period of May (June)] until early to mid-autumn [first (sec-
ond) 10-day period of September (October)]. Not surpris-
ingly, the warm IP, CMD and SMD regions show the
largest frequencies of such conditions, reaching up to
50–60% in July and August. These regions also exhibit a
shorter period of prevailing (>50%) strong cold stress con-
ditions (PET < 8 �C; October to May) compared with the
colder France (FR), AL and BL (September to June/July).
As for extreme cold stress (PET<4 �C), it is found to occur
most often from mid-October to early November until early
to mid-May in IP, FR, CMD and SMD, and from mid-
September to early October until May in AL and
BL. January and February, showing the lowest mean

FIGURE 4 Mean annual cycles of daily maximum and minimum temperatures, spatially averaged over the six regions of the study area. The upper (lower)
pair of curves in each plot corresponds to the maximum (minimum) temperature. Mind the differences in the y-axis scales [Colour figure can be viewed at
wileyonlinelibrary.com]
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monthly minimum temperatures (Figure 4), are the months
with the highest frequencies of negative PET.

Heat stress conditions (PET > 29 �C) are found in day-
time and in all regions examined (Figure 5b). As expected,
such conditions prevail in the warm IP, CMD and SMD,
but also in BL, for a period of approximately 2 months,
starting mid/end of June and spanning through August. Heat

stress is also found occurring in the cooler FR and AL, with
highest frequencies (up to ~40%) from mid-July to mid-
August. Considering extreme heat stress (PET > 41 �C), it
occurs in all regions but with clearly higher frequencies,
reaching up to 15–20% in July and August, in IP, CMD and
SMD. Daytime strong cold stress conditions (PET < 8 �C)
occur most often during winter and autumn in FR, AL and

FIGURE 5 Model-based (a) night-time (0000 UTC) and (b) daytime (1200 UTC) thermal bioclimate diagrams for the six examined regions, for the
1987–2016 period. Units are in �C [Colour figure can be viewed at wileyonlinelibrary.com]
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BL, and during winter in IP, CMD and SMD. In the latter
regions, extreme cold stress (PET < 4 �C) occurs primarily
in winter but with frequencies that do not generally exceed
50%. In contrast, FR, AL and BL exhibit such conditions
more frequently, for up to 60–90% of days in December
and January. Finally, neutral and near-neutral thermal condi-
tions (13 �C < PET<29 �C) show frequencies greater than
15–20% all year round in the warmest regions (IP, CMD,
SMD), whereas in the FR, AL and BL they are typically
found from March to mid-November. In all regions, these
conditions occur more often in spring and autumn.

3.3 | Cold extremes (PET8, PET4, PETn, PETp5,
PETp25)

3.3.1 | Climatology

Figure 6 summarizes the model-derived 1987–2016 clima-
tologies of cold bioclimate extremes indices in the Euro-
Mediterranean region. Cold (PET8) and very cold (PET4)
nights show a south–north gradient that is characteristically
shaped by topography (Figure 6a,b). The southern coastal
areas of the IP, FR, Italy, Greece, Turkey and Cyprus are
found to experience approximately 200–250 cold nights, of
which about 80–160 days can be characterized as very cold.
With increasing latitude and altitude, the number of nights
with cold and very cold thermal perception increases and
reaches up to more than 300 and 250 days, respectively,
with the highest values found over the most elevated
regions. It is also worth noticing that major urban areas
(e.g., Paris, Muenchen, Wien, Budapest, etc.) can be identi-
fied in the spatial pattern of both PET8 and PET4 as grid
points with considerably lower values compared with their
surroundings. This is clearly the result of the nocturnal
urban heat island effect, which mitigates cold stress by
maintaining elevated temperatures within the urban areas
compared with their rural surroundings (Giannaros &
Melas, 2012).

Considering the absolute intensity of cold stress, repre-
sented by PETn (Figure 6c,d), it appears that it follows the
spatial variability of the daily minimum temperature
(Figure 4). The lowest mean annual PETn values are found
over the cold AL and the BL, reaching up to −35 and
−25 �C in night-time (0000 UTC) and daytime (1200
UTC), respectively. Significantly higher values, up to
−5 �C (2 �C) at 0000 UTC (1200 UTC), are simulated for
most of the warmer IP and the southernmost parts of central
and south-east Euro-Mediterranean region. Overall, the
1987–2016 climatology of PETn shows a west–east gradi-
ent, with the coldest nights and days found over the eastern
and more continental parts of the study area. It is also evi-
dent that the coldest nights exhibit negative PET values
(i.e., extreme cold stress) throughout the domain
(Figure 6c), whereas positive values (i.e., moderate cold
stress) may be found along the southern coastal areas during
the day (Figure 6d).

Examination of the mean annual spatial pattern of
PETp5 (Figure 6e,f ) and PETp25 (Figure 6g,h) reveals
again the key influence of topography on determining the
spatial variations of the cold tail of PET's distribution.
Major orographic features of the Euro-Mediterranean
region, such as the Pyrenees, the Alps, the Dinaric Alps and
the Carpathians, can be clearly distinguished as regions of
domain-wide minimum percentile values, with the southern
parts of the domain showing much milder PETp5 and
PET25 values. Further inspection of Figure 6e–h indicates
that the lowest night-time 5th and 25th percentile PETs do
not exceed 5 �C throughout the entire study area, thus corre-
sponding to strong cold stress conditions. In the presence of
solar radiation, the cold tail of the distribution of daytime
PET shifts towards warmer values, reaching up to neutral
and near-neutral comfort conditions.

3.3.2 | Trends

Figure 7 presents the 30-year long-term trends of cold bio-
climate extremes, derived from the analysis of the WRF
simulations. At a first glance, it is evident that the model
suggests a decrease in the number of cold (PET8) and very
cold (PET4) nights (Figure 7a,b). For both PET8 and PET4,
statistically significant (p < .10) negative trends are found
over almost the entire European Mediterranean. The
decreasing trends, reaching values of up to 1.5 days year−1,
are widespread and most pronounced over the south–east
parts of the Euro-Mediterranean region, including the
BL. Non-significant positive trends (0.5 days year−1) exist
over parts of the IP, FR and the AL.

Contrary to the threshold-dependent PET8 and PET4
indices, the absolute extreme PETn index shows no preferen-
tial change during the examined 30-year period (Figure 7c,d).
Considering both day and night, almost equally distributed,
non-significant increasing and decreasing trends of up to
±0.3 �C year−1 characterize the presented maps. Statistically
significant trends are found to be primarily of negative sign,
indicating intensification of cold stress conditions during the
coldest days and nights. However, these trends appear not to
follow any particular spatial pattern. Instead, they are sparsely
distributed mainly over the eastern BL, along the Black sea
coastline, the IP and FR.

Examination of the 1987–2016 trends per year of per-
centile PETs reveals a cooling/warming dipole, seen both in
night-time (Figure 6e,g) and daytime (Figure 6f,h). As
shown, the Euro-Mediterranean region can be divided into
two parts, each dominated by trends of opposite sign. In
general, the west part is characterized by non-significant
negative trends that do not exceed −0.1 �C year−1 for both
PETp5 and PETp25. Some statistically significant trends are
mainly found for daytime PETp25 over the IP, suggesting
cooling (<0.1 �C year−1) of the cold tail of PET’s distribution
(Figure 6f ). Widespread positive trends are found over the
eastern part of the domain. For the cold extremes of the
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PET distribution, represented by PETp5, the positive trends
show no statistical significance except over small parts of
Greece and Turkey (Figure 6e,f ). On the other hand, there
is a clear and statistically significant warming trend for
night-time PETp25 (Figure 6g), which reaches up to 0.15 �C
year−1 in the northern and eastern parts of the Balkan Pen-
insula. This trend is also evident for daytime PETp25 but
with statistical significance restricted over the southernmost
parts of south–east European Mediterranean (Figure 6h).

Trends with different levels of statistical significance for
the previously discussed indices are summarized in Table 3.

The presented trends per decade were computed using spa-
tial averages of the indices over the specified regions of the
study area (Figure 1a). Results indicate that cold (PET8)
and very cold (PET4) nights have been decreasing substan-
tially throughout the study area over the course of the
1987–2016 period. The largest, statistically significant
(p ≤ .01) trends are found for BL and SMD, approximating
−6 to −7 days per decade. Cold stress conditions during the
coldest night and day (PETn) show both increasing and
decreasing trends that are non-significant in all regions
except for the IP, for which the reported trend suggests a
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FIGURE 6 The 1987–2016 time mean of (a) PET8, (b) PET4, (c) 0000 UTC PETn, (d) 1200 UTC PETn, (e) 0000 UTC PETp5, (f ) 1200 UTC PETp5,
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statistically significant (.05 < p ≤ .10) decrease of night-
time PETn. The IP is also found to be the only region with
a statistically significant (.01 < p ≤ .05) cooling trend of
−0.21 �C per decade for PETp5, whereas positive, but non-
significant, warming trends are found for the rest of the
Euro-Mediterranean region. Last, statistically significant
warming trends are found for PETp25 for the eastern part of
the domain (BL, CMD, SMD), with the largest values
(0.5–0.6 �C per decade) computed for SMD. All in all, the
results shown in Table 3 provide evidence for a warming of
the cold facet of the thermal bioclimate, most pronounced
over south–east European Mediterranean.

3.4 | Hot extremes (PET35, PET41, PETx, PETp75,
PETp95)

3.4.1 | Climatology

The model-based 1987–2016 climatologies of hot biocli-
mate extremes indices in the Euro-Mediterranean region are
presented in Figure 8. Lowland areas can be clearly seen as
hot-spots with the most hot (PET35) and very hot days
(PET41) across the entire domain (Figure 8a,b). This is par-
ticularly true for the Andalusian Plain in south–west Spain,
the Thessaly Plain and the Axios Valley in central and
northern Greece, respectively, and the western plains of
Turkey bordering with the Aegean Sea, for which 90 hot
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FIGURE 7 The 1987–2016 trend per year of (a) PET8, (b) PET4, (c) 0000 UTC PETn, (d) 1200 UTC PETn, (e) 0000 UTC PETp5, (f ) 1200 UTC PETp5,
(g) 0000 UTC PETp25 and (h) 1200 UTC PETp25. Hatching indicates grid points where the trends are not statistically significant, at least at the 90%
confidence level (p > .10). Mind the differences in the scales [Colour figure can be viewed at wileyonlinelibrary.com]

12 GIANNAROS ET AL.

http://wileyonlinelibrary.com


and 40–50 very hot days per year can be considered as typi-
cal. PET35 and PET41 decrease with increasing altitude
and latitude, reaching values close or equal to zero for the
most elevated areas.

The night-time mean annual monthly maximum PET
(PETx) shows a fairly smooth and, more or less, homoge-
neous spatial pattern, with specific features superimposed
on it. As shown in Figure 8c, values between 15 and 20 �C
are widespread across the entire study area, except from the
lowlands of south–west Spain where PETx is found to
exceed 23 �C (i.e., slight heat stress). On top of this back-
ground, high-altitude regions are delineated by lower values
that correspond to moderate and strong cold stress condi-
tions (4 �C < PET<13 �C). Major urban areas (e.g., Porto,
Madrid, Paris, Milan, Budapest, Belgrade, etc.) can be also
recognized by the higher PETx values compared to their
surroundings, as a result of the nocturnal urban heat island
effect (Giannaros & Melas, 2012). On the other hand,
although it is influenced by topography, the daytime spatial
distribution of PETx shows a more zonal pattern
(Figure 8d). The highest values, reaching up to more than
50 �C, are found over lowland areas, approximately below
the 42oN parallel, decreasing further north and showing
local minima over the most elevated areas.

For the largest part of the European Mediterranean, values
within the range 10–15 �C, corresponding to slight and mod-
erate cold stress, can be taken as typical for the highest 95th
percentile PET during the night (Figure 8e). Higher values,
corresponding to thermal comfort (18 �C < PET<23 �C), are
found over south–west Spain and over major urban areas.
During the day, the spatial pattern of PETp95 shows local
maxima up to more than 40 �C (i.e., extreme heat stress) over
the lowland continental areas of the Euro-Mediterranean
region (Figure 8f ). From a health point of view, this is very
relevant since these areas are densely populated. Last, similar
findings can be reported by inspecting the maps for the 75th
percentile PET, shown in Figure 8g–h.

3.4.2 | Trends

Figure 9 presents the 30-year long-term trends of hot biocli-
mate extremes, derived from the WRF simulations. A quick

look reveals a predominant warming trend for all indices.
Based on the analysis of the numerical simulations, the
number of hot days (PET35) in the Euro-Mediterranean
region has overall increased over the course of the exam-
ined 30-year period (Figure 9a). Statistically significant
increasing trends of up to 1.5 days year−1 are mostly found
in the eastern part of the domain, as well as in lowland areas
in the central and west European Mediterranean. The num-
ber of very hot days (PET41) also shows increasing trends,
but of lower magnitude (~0.5 days year−1) and with spa-
tially restricted statistical significance (Figure 9b).

Focusing on PETx, results suggest warming of the hottest
days and nights in the study area. In terms of magnitude, pos-
itive trends are found to be larger for daytime (Figure 9d),
approaching 0.3 �C year−1, than for night-time (Figure 9c).
The statistical significance of the computed trends appears
not to have any particular spatial preference, although it can
be seen that the northern latitudes of the domain show more
widespread and coherent regions with statistically significant
increasing trends. It is also worth noticing the presence of
negative trends, which are most evident for the western part
of the domain. In general, these trends are non-significant,
except from over the IP, for parts of which statistically signif-
icant decreasing trends of up to −0.2 �C year−1 can be found
in the case of daytime PETx (Figure 9d).

Larger trends are also found for the daytime than for the
night-time 95th and 75th percentile PETs, as shown in
Figure 9e–h. The computed trends reach up to 0.3 �C year−1

during the day and approximately 0.1 �C year−1 during the
night for both PETp95 and PETp75. However, the most
interesting feature of the presented maps is the presence of
statistically significant increasing trends across the entire
Euro-Mediterranean region, which provides solid evidence
for warming of the hot tail of the distribution of PET. In
particular, during the night (Figure 9e,g), both indices show
nearly uniform statistically significant positive trends over
the largest part of the domain, with non-significant trends
confined to the western parts (FR, IP). In the daytime
(Figure 9f,h), the positive trends retain in large the spatially
extended statistical significance, especially over the north-
eastern part of the study area (Balkan Peninsula, Turkey).

TABLE 3 The 1987–2016 trend per decade of cold PET-based extremes indices. For PET8 and PET4, units are days. For PETn, PETp5 and PETp25, units
are oC

PET8 PET4 PETn PETp5 PETp25

Region 0000 UTC 0000 UTC 0000 UTC 1200 UTC 0000 UTC 1200 UTC 0000 UTC 1200 UTC

IP −2.52* −1.41 −0.37* −0.05 −0.06 −0.21** −0.11 −0.16

FR −1.34 −1.12 0.36 −0.17 0.07 0.07 −0.07 −0.04

AL −2.95*** −4.25*** 0.00 0.34 0.26 0.12 −0.03 −0.06

CMD −3.61*** −4.55*** 0.02 0.17 0.22 0.06 0.24** 0.02

BL −7.72*** −6.04*** −0.40 −0.10 0.46 0.26 0.62** 0.46

SMD −6.77*** −6.71*** 0.02 −0.07 0.59 0.43 0.52*** 0.64**

Note. AL = Alps; BL = Balkans; CMD = Central Mediterranean; FR = France; IP = Iberian Peninsula; SMD = south–east Mediterranean.

*Statistical significance at the 90% confidence interval (.05 < p ≤ .10). **Statistical significance at the 95% confidence interval (.01 < p ≤ .05). ***Statistical signifi-
cance at the 99% confidence interval (p ≤ .01).
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Similarly to Table 3, Table 4 summarizes the computed
trends per decade with different levels of statistical signifi-
cance for hot bioclimate extremes indices. Overall, the
results indicate warming of the hot facet of the thermal bio-
climate. Almost all reported trends are positive, with most
of them exhibiting the highest level of statistical signifi-
cance. Over the course of the 1987–2016 period, hot
(PET35) and very hot (PET41) days have been becoming
more frequent, with the largest statistically significant

(p ≤ .01) trends, reaching up to 5 days per decade, found in
the eastern part of the European Mediterranean (BL, SMD).
The mean annual monthly maximum PET (PETx) also
shows increasing trends in all regions, except from the IP
for which non-significant decreasing trends are reported.
Daytime trends for PETx are found to be larger than their
night-time counterparts, reaching values of up to 0.60 �C
per decade. Considering the hot tail of PET’s distribution,
the computed trends for PETp95 and PETp75 provide solid
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evidence for statistically significant warming. In particular,
it is worth highlighting the trends in the case of BL, which
reach up to 0.9 and 1 �C per decade for the daytime 95th
and 75th percentile PET, respectively.

4 | DISCUSSION

High-resolution numerical simulations, carried out with the
WRF model, were employed for studying the climatology
of the Euro-Mediterranean thermal bioclimate and for inves-
tigating the presence of long-term trends over the most

recent 30-year period (i.e., 1987–2016), focusing on
extremes. The numerical simulations were first evaluated
against observational data for temperature, which is the key
driver of variations in bioclimatic conditions (Basarin et al.,
2017; Chen & Matzarakis, 2017; Giannaros et al., 2015).
The evaluation procedure revealed an overall satisfactory
model performance, characterized by mostly cold biases
within the ranges reported in similar past modelling studies
(Garciá-Diéz et al., 2013, 2015; Katragkou et al., 2015).
The analysis of the thermal bioclimate was then carried out
using 10 extremes-oriented indices, defined based on the
RayMan-computed PET.
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The presented model-based climatology of the Euro-
Mediterranean thermal bioclimate extremes agrees well with
the results of similar past studies carried out on either a
global (Jendritzky & Tinz, 2009; Matzarakis & Amelung,
2008) or a European scale (Matzarakis, Georgiadis, &
Rossi, 2007; Tinz & Jendritzky, 2005). In particular, biocli-
matic extremes exhibit a more or less zonal pattern, with
heat (cold) stress occurring more frequently in the southern
(northern) regions of the European Mediterranean. Topogra-
phy acts on top of this spatial pattern, delineating areas of
maxima and minima. It is worth noticing that these findings
are in agreement with studies focusing on temperature
and/or temperature-based extremes indices (e.g., Flaounas
et al., 2013; Tanarhte, Hadjinicolaou, & Lelieveld, 2012;
Xoplaki, González-Rouco, Luterbacher, & Wanner, 2003).
Hence, they provide further evidence for the important role
of temperature in shaping thermal bioclimate variations.

The time series analysis of the model-derived PET-
based extremes indices suggests an overall warming trend
that is generally larger in magnitude for cold bioclimate
extremes. Results indicate that during the 1987–2016 period
the decrease of cold days (PET < 8 �C) has been about
twice as large as the increase of hot days (PET > 35 �C).
This agrees with several studies reporting more rapid
decrease of cold-related temperatures extremes than increase
of warm/hot extremes (e.g., Alexander et al., 2006; Easter-
ling et al., 1997; Stone & Weaver, 2002; Yan et al., 2002).

Considering the distribution of PET, the conducted analy-
sis shows warming of both the cold and the warm tail. The
highest 95th and 75th percentile PETs show statistically sig-
nificant increasing trends that are larger during the day,
whereas the lowest 5th and 25th percentiles show larger trend
magnitudes in the night, with statistical significance verified
only for the 25th percentile PET. In terms of spatial variabil-
ity, the computed trends are most pronounced in the south–
east European Mediterranean and the BL. This confirms pre-
vious studies that highlighted the above geographical regions
of the Euro-Mediterranean region among the most responsive
to warming (e.g., Efhtymiadis, Goodess, & Jones, 2011; Kos-
topoulou et al., 2014). On the other hand, wide parts of the
Euro-Atlantic Mediterranean region (north–east IP, west FR)
are found not to exhibit such warming trends and even show

a cooling signal. This could indicate changes in the large-
scale circulation patterns during the examined 30-year
period. For instance, an increase in North Atlantic blocking
situations could result to cooler temperatures, associated with
the predominance of northerly advection. Another plausible
explanation for the decreasing trends could be changes in
cyclonic influence of these regions, which could affect warm
air advection (e.g., Seubert et al., 2014).

5 | CONCLUSIONS

The results of this study provide evidence that the Euro-
Mediterranean thermal bioclimate has undergone significant
warming during the latest 30 years, which can be summa-
rized in the decrease (increase) of cold (hot) extremes. As
reported and discussed, the probability distribution of PET
shows statistically significant warming considering both its
cold and warm tail. This produces deteriorated, more stress-
ful bioclimatic conditions that affect adversely human health
and well-being. Furthermore, the shift towards a warmer
thermal bioclimate is anticipated to influence energy
demand and consumption for cooling, which in turn affects
greenhouse gases’ emissions (Matzarakis & Ame-
lung, 2008).

The consideration of PET, which is a thermo-
physiologically relevant index, broadens the usual practice
of presenting maps focusing on a single parameter
(e.g., temperature). Most importantly, the adopted approach
allows for spatially assessing thermal stress, which is of par-
amount significance for human health and well-being.
Within this context, problem-oriented information on the
relationship between climate and climate change, and
human health can be provided. Potential areas of future
applications, related to the present work, include the sectors
of tourism and recreation, energy and public health. For
instance, the spatiotemporally detailed human biometeoro-
logical data could be employed for highlighting regions
with favourable or less favourable thermal comfort condi-
tions, which is an important aspect in tourism design appli-
cations. The reported trends’ data could be also exploited
for identifying areas that show high vulnerability to cold

TABLE 4 The 1987–2016 trend per decade of hot PET-based extremes indices. For PET35 and PET41, units are days. For PETx, PETp95 and PETp75,
units are oC

PET35 PET41 PETx PETp95 PETp75

Region 1200 UTC 1200 UTC 0000 UTC 1200 UTC 0000 UTC 1200 UTC 0000 UTC 1200 UTC

IP 1.05 0.18 −0.05 −0.31 −0.02 −0.01 0.21 0.39*

FR 0.41 0.05 0.20 0.01 0.14 −0.01 0.09 0.26

AL 1.46*** 0.33*** 0.35*** 0.57** 0.31*** 0.48*** 0.27*** 0.29**

CMD 2.55* 0.62 0.15 0.16 0.20** 0.24 0.23*** 0.29*

BL 4.88*** 1.24*** 0.38* 0.60** 0.50*** 0.88*** 0.60*** 0.98***

SMD 3.62*** 2.00*** 0.45** 0.44 0.57*** 0.59*** 0.43*** 0.37**

*Statistical significance at the 90% confidence interval (.05 < p ≤ .10). **Statistical significance at the 95% confidence interval (.01 < p ≤ .05). ***Statistical signifi-
cance at the 99% confidence interval (p ≤ .01).
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and hot stress, thus supporting policymaking related to pub-
lic health, energy and tourism. Last but not least, it is the
authors’ strong belief that this work can be employed for
increasing the awareness of the public with respect to the
adverse impacts of the on-going climate change in the Euro-
Mediterranean region.

ACKNOWLEDGEMENTS

The research leading to these results has been co-funded by
the European Commission under the H2020 Research Infra-
structures contract no. 675121 (project VI-SEEM). All
numerical simulations have been produced using the
GRNET’s ARIS high-performance computing (HPC) infra-
structure (https://hpc.grnet.gr/en/). We acknowledge the E-
OBS dataset from the EU-FP6 project ENSEMBLES
(http://ensembles-eu.metoffice. com) and the data providers
in the ECA&D project (http://www. ecad.eu).

ORCID

Theodore M. Giannaros http://orcid.org/0000-0003-1138-3724

REFERENCES

Alexander, L. V., Zhang, X., Peterson, T. C., Caesar, J., Gleason, B.,
Klein-Tank, A. M. G., … Vasquez-Aguirre, J. L. (2006). Global observed
changes in daily climate extremes of temperature and precipitation. Journal
of Geophysical Research, 111, D05109.

Amengual, A., Homar, V., Romero, R., Brooks, H. E., Ramis, C.,
Gordaliza, M., & Alonso, S. (2014). Projections of heat waves with high
impact on human health in Europe. Global Planeteray Change, 119, 71–84.

Basarin, B., Lukić, T., Mesaroš, M., Pavić, D., Dordević, J., & Matzarakis, A.
(2017). Spatial and temporal analysis of extreme bioclimate conditions in
Vojvodina, Northern Serbia. International Journal of Climatology, 38,
142–157. https://doi.org/10.1002/joc.5166

Błażejczyk, K. (1994). New climatological-and-physiological model of the
human heat balance outdoor (MENEX) and its applications in bioclimatolo-
gical studies in different scales. In K. Błażejczyk & B. Krawczyk (Eds.),
Bioclimatic research of the human heat balance. Zeszyty IGiPZ PAN 28
(pp. 27–58). Warsaw, Poland: Polish Academy of Sciences.

Błażejczyk, K., Epstein, Y., Jendritzky, G., Staiger, H., & Tinz, B. (2011).
Comparison of UTCI to selected thermal indices. International Journal of
Biometeorology, 56, 515–535.

BOHS. (1996). The thermal environment. British Occupational Hygiene Society
Technical Guide No. 12 (2nd ed.). Leeds, England: Scientific Consul-
tants Ltd.

Bolle, H. J. (2002). Mediterranean climate: Vulnerability and trends.
New York, NY: Springer.

Brosy, C., Zaninovic, K., & Matzarakis, A. (2014). Quantification of climate
tourism potential of Croatia based on measured data and regional modeling.
International Journal of Biometeorology, 58, 1369–1381.

Brown, R. D., & Gillespie, T. J. (1986). Estimating outdoor thermal comfort
using a cylindrical radiation thermometer and an energy budget model.
International Journal of Biometeorology, 30, 43–52.

Büttner, K. (1938). Physikalische Bioklimatologie. Leipzig, Germany:
Akademische.

Carder, M., McNamee, R., Beverland, I., Elton, R., Cohen, G. R., Boyd, J., &
Agius, R. M. (2005). The lagged effect of cold temperature and wind chill
on cardiorespiratory mortality in Scotland. Occupational and Environmental
Medicine, 62, 702–710.

Charalampopoulos, I., Tsiros, I., Chronopoulou-Sereli, A., & Matzarakis, A.
(2013). Analysis of thermal bioclimate in various urban configurations in
Athens, Greece. Urban Ecosystems, 16, 217–233.

Chen, Y.-C., & Matzarakis, A. (2017). Modified physiologically equivalent
temperature—Basics and applications for western European climate. Theoretical
and Applied Climatology, 1–15. https://doi.org/10.1007/s00704-017-2158-x

Daneshvar, M. R. M., Bagherzadeh, A., & Tavousi, T. (2013). Assessment of
bioclimatic comfort conditions based on physiologically equivalent tempera-
ture (PET) using the RayMan model in Iran. Central European Journal of
Geosciences, 5, 53–60.

De Freitas, C. R., Matzarakis, A., & Scott, D. (2007). Climate, tourism and rec-
reation: a debate of the ISB’s Commission on climate, tourism and recrea-
tion. In Proceedings of the 3rd International Workshop on Climate,
Tourism and Recreation, 19–22 September, 2007, Alexandroupolis, Greece.

Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisfort, P., Poli, P., Kobayashi,
S, … Vitard, F. (2011). The ERA-Interim reanalysis: Configuration and per-
formance of the data assimilation system. Quarterly Journal of the Royal
Meteorological Society, 137, 553–597.

Diffenbaugh, N. S., Pal, J. S., Giorgi, F., & Gao, X. (2007). Heat stress intensi-
fication in the Mediterranean climate change hotspot. Geophysical Research
Letters, 34, L11706.

Easterling, D. R., Horton, B., Jones, P. D., Peterson, T. C., Karl, T. R.,
Parker, D. E., … Folland, C. K. (1997). Maximum and minimum tempera-
tures for the globe. Science, 277, 364–367.

Efhtymiadis, D., Goodess, C. M., & Jones, P. D. (2011). Trends in Mediterra-
nean gridded temperature extremes and large-scale circulation influences.
Natural Hazards and Earth System Sciences, 11, 2199–2214.

Endler, C., & Matzarakis, A. (2011). Climatic potential for tourism in the Black
Forest, Germany—Winter season. International Journal of Biometeorology,
55, 339–351.

Fanger, P. O. (1970). Thermal comfort: Analysis and applications in environ-
mental engineering. New York, NY: McGraw-Hill.

Fanger, P. O. (1972). Thermal comfort. New York, NY: McGraw-Hill.
Flaounas, E., Drobinski, P., Vrac, M., Bastin, M., Lebeaupin-Brossier, C.,

Stéfanon, M., … Calvet, J.-C. (2013). Precipitation and temperature
space-time variability and extremes in the Mediterranean region: Evaluation
of dynamical and statistical downscaling methods. Climate Dynamics, 40,
2687–2705.

Garciá-Diéz, M., Fernández, J., Fita, L., & Yagüe, C. (2013). Seasonal depen-
dence of WRF model biases and sensitivity to PBL schemes over Europe.
Quarterly Journal of the Royal Meteorological Society, 139, 501–514.

Garciá-Diéz, M., Fernández, J., & Vautard, R. (2015). An RCM multi-physics
ensemble over Europe: Multi-variable evaluation to avoid error compensa-
tion. Climate Dynamics, 45, 3141–3156.

Giannaros, T. M., & Melas, D. (2012). Study of the urban heat island in a
coastal Mediterranean city: The case study of Thessaloniki, Greece. Atmo-
spheric Research, 118, 103–120.

Giannaros, T. M., Melas, D., & Matzarakis, A. (2015). Evaluation of thermal
bioclimate based on observational data and numerical simulations: An appli-
cation to Greece. International Journal of Biometeorology, 59, 151–164.

Giorgi, F. (2006). Climate change hot-spots. Geophysical Research Letters, 33,
L08707.

Gosling, S. N., Lowe, J. A., McGregor, G. R., Pelling, M., & Malamud, B. D.
(2009). Associations between elevated atmospheric temperature and human
mortality: A critical review of the literature. Climatic Change, 92, 299–341.

Grell, G., & Devenyi, D. (2002). A generalized approach to parameterizing con-
vection combining ensemble and data assimilation techniques. Geophysical
Research Letters, 29, L01693.

Haylock, M. R., Hofstra, N., Klein Tank, A. M. G., Klok, E. J., Jones, P. D., &
New, M. (2008). A European daily high-resolution gridded data set of sur-
face temperature and precipitation for 1950-2006. Journal of Geophysical
Research, 113, D20119.

Herrera, S., Fita, L., Fernández, J., & Gutiérrez, J. (2010). Evaluation of the
mean and extreme precipitation regimes from the ENSEMBLES regional
climate multimodel simulations over Spain. Journal of Geophysical
Research, 115, D21117.

Hofstra, N., Haylock, M., New, M., & Jones, P. D. (2009). Testing E-OBS
European high-resolution gridded dataset of daily precipitation and surface
temperature. Journal of Geophysical Research, 114, D011799.

Holmer, I. (2011). Chapter 42: Cold indices and standards. In ILO encyclopedia
of occupational health and safety (Vol. 2). Geneva: International Labor
Organization. Retrieved from http://www.iloencyclopaedia.org/part-vi-
16255/heat-and-cold/42/cold-indices-and-standards

GIANNAROS ET AL. 17

https://hpc.grnet.gr/en/
http://ensembles-eu.metoffice
http://www
http://orcid.org/0000-0003-1138-3724
http://orcid.org/0000-0003-1138-3724
https://doi.org/10.1002/joc.5166
https://doi.org/10.1007/s00704-017-2158-x


Hong, S. Y., Noh, Y., & Dudhia, J. (2006). A new vertical diffusion package
with an explicit treatment of entrainment processes. Monthly Weather
Review, 134, 2318–2341.

Höppe, P. (1993). Heat balance modeling. Experientia, 49, 741–746.
Höppe, P. (1999). The physiological equivalent temperature—A universal index

for the biometeorological assessment of the thermal environment. Interna-
tional Journal of Biometeorology, 43, 71–75.

Iacono, M. J., Delamere, J. S., Mlawer, E. J., Shephard, M. W.,
Clough, S. A., & Collins, W. D. (2008). Radiative forcing by long-lived
greenhouse gases: Calculations with the AER radiative transfer models.
Journal of Geophysical Research, 113, D13103.

ISO7730. (2005). ISO7730: Ergonomics of the thermal environment: Analytical
determination and interpretation of thermal comfort using calculation of the
PMV and PDD indices and local thermal comfort criteria. Geneva, Switzer-
land: ISO.

Jendritzky, G. (1991). Selected questions of topical interest in human bioclima-
tology. International Journal of Biometeorology, 35, 139–150.

Jendritzky, G., & Nübler, W. (1981). A model analyzing the urban thermal envi-
ronment in physiologically significant terms. Archives for Meteorology,
Geophysics, and Bioclimatology Series B, 29, 313–326.

Jendritzky, G., & Tinz, B. (2009). The thermal environment of the human being
on a global scale. Global Health Action, 2, 1–18.

Junk, J., Matzarakis, A., Ferrone, A., & Krein, A. (2014). Evidence of past and
future changes in health-related meteorological variables across Luxemburg.
Air Quality, Atmosphere and Health, 7, 71–81.

Katragkou, E., Garciá-Diéz, M., Vautard, R., Sobolowski, S., Zanis, P.,
Alexandri, G., … Jacob, D. (2015). Regional climate hindcast simulations
within EURO-CORDEX: Evaluation of a WRF multi-physics ensemble.
Geoscientific Model Development, 8, 603–618.

Kendall, M. G. (1976). Rank correlation methods (4th ed.). London, England:
Griffin.

Kerslake, D. M. K. (1972). The stress of hot environments. Cambridge,
England: Cambridge United Press.

Kioutsioukis, I., de Meij, A., Jakobs, H., Katragkou, E., Vinuesa, J.-F., &
Kazantzidis, A. (2016). High resolution WRF ensemble forecasting for irri-
gation: Multi-variable evaluation. Atmospheric Research, 167, 156–174.

Kosatsky, T. (2005). The 2003 European heat waves. Euro Surveillance, 10,
148–149.

Kostopoulou, E., Giannakopoulos, C., Hatzaki, M., Karali, A.,
Hadjinicolaou, P., Lelieveld, J., & Lange, M. A. (2014). Spatio-temporal
patterns of recent and future climate extremes the eastern Mediterranean and
Middle East region. Natural Hazards and Earth System Sciences, 14,
1565–1577.

Kotlarski, S., Keuler, K., Christensen, O. B., Colette, A., Déqué, M.,
Gobiet, A., … Wulfmeyer, V. (2014). Regional climate modeling on
European scales: A joint standard evaluation of the EURO-CORDEX RCM
ensemble. Geoscientific Model Development, 7, 1297–1333.

Kovats, S. R., & Jendritzky, G. (2006). Heat-waves and human health. In
B. Menne & K. L. Ebi (Eds.), Climate change and adaptation strategies for
human health (pp. 63–97). Darmstadt, Germany: Steinkopff.

Kysely, J., & Plavcova, E. (2010). A critical remark on the applicability of
E-OBS European gridded temperature dataset for validating control climate
simulations. Journal of Geophysical Research, 115, D014123.

Laschewski, G., & Jendritzky, G. (2002). Effects of the thermal environment on
human health: And investigation of 30 years of daily mortality data from
SW Germany. Deutscher Wetterdienst, Germany: Business Unit Human
Biometeorology.

Lin, T. P., & Matzarakis, A. (2011). Tourism-climate information based on
human thermal perception in Eastern China and Taiwan. Tourism Manage-
ment, 32, 492–500.

Lin, Y. L., Farley, R. D., & Orville, H. D. (1983). Bulk parameterization of the
snow field in a cloud model. Journal of Climate and Applied Meteorology,
22, 1065–1092.

Lionello, P., Malanotte-Rizzoli, P., Boscolo, R., Alpert, P., Artale, V., Li, L., …
Xoplaki, E. (2006). The Mediterranean climate: An overview of the main
characteristics and issues. In P. Lionello, P. Malanotte-Rizzoli, &
R. Boscolo (Eds.), Mediterranean climate variability (pp. 1–26). Amster-
dam, the Netherlands: Elsevier.

Mann, H. B. (1945). Nonparametric tests against trend. Econometrica, 13,
245–259.

Matzarakis, A. (2007). Assessment method for climate and tourism based on
daily data. In A. Matzarakis, C. R. de Freitas, & D. Scott (Eds.), Develop-
ments in tourism climatology (pp. 52–58). Freiburg, Germany: International
Socieity of Biometeorology.

Matzarakis, A., & Amelung, B. (2008). Physiologically equivalent temperature
as indicator for impacts of climate change on thermal comfort of humans. In
M. C. Thomson, R. Garcia-Herrera, & M. Beniston (Eds.), Seasonal fore-
casts, climatic change and human health (pp. 161–172). Netherlands:
Springer Netherlands.

Matzarakis, A., Georgiadis, T., & Rossi, F. (2007). Thermal bioclimate analysis
for Europe and Italy. Il Nuovo Cimento, 30, 623–631. https://doi.org/10.
1393/ncc/i2007-10268-0

Matzarakis, A., & Mayer, H. (1997). Heat stress in Greece. International Jour-
nal of Biometeorology, 41, 34–39.

Matzarakis, A., Mayer, H., & Iziomon, M. G. (1999). Applications of a univer-
sal thermal index: Physiological equivalent temperature. International Jour-
nal of Biometeorology, 43, 76–84.

Matzarakis, A., Muthers, S., & Koch, E. (2011). Human biometeorological eval-
uation of heat-related mortality in Vienna. Theoretical and Applied Clima-
tology, 105, 1–10.

Matzarakis, A., Rutz, F., & Mayer, H. (2007). Modeling radiation fluxes in sim-
ple and complex environments—Application of the RayMan model. Inter-
national Journal of Biometeorology, 51, 323–334.

Matzarakis, A., Rutz, F., & Mayer, H. (2010). Modeling radiation fluxes in sim-
ple and complex environments: Basics of the RayMan model. International
Journal of Biometeorology, 54, 131–139.

McGregor, G. R. (2011). Human biometeorology. Progress in Physical Geogra-
phy, 36, 93–109.

Morillón-Gálvez, D., Saldana-Flores, R., & Tejeda-Martinez, A. (2004). Human
bioclimatic atlas for Mexico. Solar Energy, 76, 781–792.

Muthers, S., Laschewski, G., & Matzarakis, A. (2017). The summers 2003 and
2015 in south-West Germany: Heat waves and heat-related mortality in the
context of climate change. Atmosphere, 8, 224. https://doi.org/10.3390/
atmos8110224

Muthers, S., Matzarakis, A., & Koch, E. (2010). Climate change and mortality
in Vienna—A human biometeorological analysis based on regional climate
modeling. International Journal of Environmental Research and Public
Health, 7, 2965–2977.

Nastos, P. T., & Matzarakis, A. (2006). Weather impacts on respiratory infec-
tions in Athens, Greece. International Journal of Biometeorology, 50,
358–369.

Orosa, J. A., Costa, A. M., Rodríguez-Fernández, A., & Roshan, G. (2014).
Effect of climate change on outdoor thermal comfort in humid climates.
Journal of Environmental Health Science and Engineering, 12, 46.

Parsons, K. C. (2011). Chapter 42: Assessment of heat stress and heat stress
indices. In ILO Encyclopedia of occupational health and safety (Vol. 2).
Retrieved from http://www.iloencyclopaedia.org/part-vi-16255/heat-and-
cold/42/assessment-of-heat-stress-and-heat-stress-indicies

Parsons, K. C. (2003). Human thermal environments: The effects of hot, moder-
ated and cold environments on human health, comfort and performance.
New York, NY: Taylor and Francis.

Poupkou, A., Nastos, P., Melas, D., & Zerefos, C. (2011). Climatology of dis-
comfort index and air quality index in a large urban Mediterranean agglom-
eration. Water, Air and Soil Pollution, 222, 163–183.

Robine, J.-M., Cheung, S. L. K., Le Roy, S., Van Oyen, H., Griffiths, C.,
Michel, J.-P., & Herrmann, F. R. (2008). Death toll exceeded 70,000 in
Europe during the summer of 2003. Comptes Rendus Biologies, 331,
171–178.

Schär, C., & Jendritzky, G. (2004). Climate change: Hot news from summer
2003. Nature, 432, 559–560.

Segnalini, M., Nardone, A., & Bernabucci, U. (2011). Dynamics of the
temperature-humidity index in the Mediterranean basin. International Jour-
nal of Biometeorology, 55, 253–263.

Seubert, S., Fernández-Montes, S., Philipp, A., Herting, E., Jacobeit, J.,
Vogt, G., … Paeth, H. (2014). Mediterranean climate extremes in synoptic
downscaling assessments. Theoretical and Applied Climatology, 117,
275–275.

Sibbons, J. L. (1966). Assessment of thermal stress from energy balance consid-
erations. Journal of Applied Physiology, 21, 1207–1217.

Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D. M.,
Duda, M. G., . . . Powers, J. G. (2008). A description of the Advanced

18 GIANNAROS ET AL.

https://doi.org/10.1393/ncc/i2007-10268-0
https://doi.org/10.1393/ncc/i2007-10268-0
https://doi.org/10.3390/atmos8110224
https://doi.org/10.3390/atmos8110224


Research WRF version 3. NCAR Technical Note, NCAR/TN-475+STR,
June 2008, Boulder, CO, 125 pp.

Stone, D. A., & Weaver, A. J. (2002). Daily maximum and minimum tempera-
ture trends in a climate model. Geophysical Research Letters, 29, L01356.

Svensson, M., Thorsson, S., & Lindqvist, S. (2003). A GIS model for creating
bioclimatic maps—Examples from a high mid-latitude city. International
Journal of Biometeorology, 47, 102–112.

Tanarhte, M., Hadjinicolaou, P., & Lelieveld, J. (2012). Intercomparison of
temperature and precipitation datasets based on observations in the Mediter-
ranean and the Middle East. Journal of Geophysical Research, 117,
D12102.

Tewari, M., Chen, F., Wang, W., Dudhia, J., LeMone, M. A., Mitchell, K., . . .
Cuenca, R. H. (2004). Implementation and verification of the unified NOAH
land surface model in the WRF model. Paper presented at the 20th Confer-
ence on Weather Analysis and Forecasting/16th Conference on Numerical
Weather Prediction, 10–15 January 2004, Seattle, WA.

Tinz, B., & Jendritzky, G. (2005). Macro- and mesoscale maps of the thermal
environment. In 17th International Congress of Biometeorology. Annals of
Meteorology, 41, 641–643.

Topay, M. (2013). Mapping of thermal comfort for outdoor recreation planning
using GIS: The case of Isparta Province (Turkey). Turkish Journal of Agri-
culture and Forestry, 37, 110–120.

United Nations World Tourism Organization. (2009). World tourism barometer.
Madrid, Spain: United Nations.

Vanos, J. K., Warland, J. S., Gillespie, T. J., & Kenny, N. A. (2010). Review of
the physiology of human thermal comfort while exercising in urban land-
scapes and implications for bioclimatic design. International Journal of Bio-
meteorology, 54, 319–334.

Xoplaki, E., González-Rouco, J. F., Luterbacher, J., & Wanner, H. (2003).
Mediterranean summer air temperature variability and its connection to the

large-scale atmospheric circulation and SSTs. Climate Dynamics, 20,
723–739.

Yan, Z., Jones, P. D., Moberg, A., Bergström, H., Camuffo, D., Cocheo, C., …
Yang, C. (2002). Trends of extreme temperatures in Europe and China
based on daily observations. Climatic Change, 53, 355–392.

Yao, R., Li, B., & Liu, J. (2009). A theoretical adaptive model of thermal com-
fort: Adaptive predicted mean vote (aPMV). Building and Environment, 44,
2089–2096.

Yue, S., Pilon, P., Phinney, B., & Cavadias, G. (2002). The influence of auto-
correlation on the ability to detect trends in hydrological series. Hyrdologi-
cal Processes, 16, 1807–1829.

Zaninovic, K., & Matzarakis, A. (2009). The bioclimatological leaflet as a
means conveying climatological information to tourists and the tourism
industry. International Journal of Biometeorology, 53, 369–374.

Zhang, D. L., & Anthes, R. A. (1982). A high-resolution model of the planetary
boundary layer—Sensitivity tests and comparison with SESAME-79 data.
Journal of Applied Meteorology, 21, 1594–1609.

Zygmuntowski, M., Matzarakis, A., Koch, E., & Rudel, E. (2005). Comparison
of climate and SYNOP measurements for the bioclimate of Austria. Annalen
der Meteorologie, 41, 644–647.

How to cite this article: Giannaros TM, Kotroni V,
Lagouvardos K, Matzarakis A. Climatology and
trends of the Euro-Mediterranean thermal bioclimate.
Int J Climatol. 2018;1–19. https://doi.org/10.1002/
joc.5501

GIANNAROS ET AL. 19

https://doi.org/10.1002/joc.5501
https://doi.org/10.1002/joc.5501

	 Climatology and trends of the Euro-Mediterranean thermal bioclimate
	1  INTRODUCTION
	2  MATERIALS AND METHODS
	2.1  Study area
	2.2  Numerical modelling strategy
	2.3  Thermal assessment strategy
	2.3.1  Computation of PET

	2.4  Bioclimate extremes
	2.5  Observations and evaluation procedure

	3  RESULTS
	3.1  Model evaluation
	3.2  Overview of bioclimatic conditions
	3.3  Cold extremes (PET8, PET4, PETn, PETp5, PETp25)
	3.3.1  Climatology
	3.3.2  Trends

	3.4  Hot extremes (PET35, PET41, PETx, PETp75, PETp95)
	3.4.1  Climatology
	3.4.2  Trends


	4  DISCUSSION
	5  CONCLUSIONS
	5  ACKNOWLEDGEMENTS
	  REFERENCES


